IPv6 Security

Pedro Lorga - lorga@fccn.pt

Copy ...Rights

- This slide set is the ownership of the 6DISS project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorization
- Using part of this material must mention 6DISS courtesy
- PDF files are available from <u>www.6diss.org</u>
- Looking for a contact ?
 - Mail to : martin.potts@martel-consulting.ch
 - Or bernard.tuy@renater.fr

Contributors

- János Mohácsi, NIIF/HUNGARNET Hungary
- Octavio Medina, Octavio Medina, Laurent Toutain, ENST
- · Bernard Tuy, Jérôme Durand, Emmanuel Goiffon, Renater
- Peter Kirstein, Steve Hailes UCL
- Wolfgang Fritsche, IABG
- Jim Bound, Hewlett Packard
- Patrick Grostete, Cisco
- Mohsen Souissi, AFNIC
- Alain Durand, Sun Microsystems
- · Bill Manning, ISI
- Alain Baudot, France Telecom R&D
- Pedro Lorga, FCCN
- And many others

What is new with IPv6?

- Security was considered from the beginning in IPv6
 - One can rely on certain features existing
- When new services were considered, their security was part of IPv6 thinking
- Some of the areas where the thinking is obvious are:
 - IPsec
 - Making intrusion harder

Threats to be Countered in IPV6

- Scanning Gateways and Hosts for weakness
- Scanning for Multicast Addresses
- Unauthorised Access Control
- Firewalls
- Protocol Weaknesses
- Distributed Denial of Service
- Transition Mecanisms

Scanning Gateways and Hosts

Subnet Size is much larger

(about 500.000 years to scan a /64 subnet@1M addresses/sec)

- NMAP doesn't even support for IPv6 network scanning
- But...
 - IPv6 Scanning methods are likely to change (DNS, easy to remember numbering)
 - Compromising a router at key transit points

Scanning Multicast Addresses

- New attack vectors "All node/router addresses"
- New Multicast Addresses IPv6 supports new multicast addresses that can enable an attacker to identify key resources on a network and attack them
 - For example, all nodes (FF02::1), all routers (FF05::2) and all DHCP servers (FF05::5)
 - Addresses must be filtered at the border in order to make them unreachable from the outside

Unauthorised Access Control

- Policy implementation in IPv6 with Layer 3 and Layer 4 is still done in firewalls
- Some design considerations!
 - Filter site-scoped multicast addresses at site boundaries
 - Filter IPv4 mapped IPv6 addresses on the wire

Action	Src	Dst	Src port	Dst port
permit	a:b:c:d::e	x:y:z:w::v	any	ssh
deny	any	any		

Unauthorised Access control

- non-routable + bogon address filtering slightly different
 - in IPv4 easier deny non-routable + bogon
 - in IPv6 easier to permit legitimate (almost)

Action	Src	Dst	Src port	Dst port
deny	2001:db8::/32	host/net		
permit	2001::/16	host/net	any	service
permit	2002::/16	host/net	any	service
permit	2003::/16	host/net	any	service
permit	3ffe::/16	host/net	any	service
deny	any	any		

Firewalls

- IPv6 architecture and firewall requirements
 - even better: e2e security with IPSec
 - Weaknesses of the packet filtering cannot be made hidden by NAT
 - IPv6 does not require end-to-end connectivity, but provides end-to-end addressability
 - Support for IPv4/IPv6 transition and coexistence
 - Not breaking IPv4 security

Firewalls

- FTP:
 - Very complex: PORT, LPRT, EPRT, PSV,
 EPSV, LPSV (RFC 1639, RFC 2428)
 - virtually no support in IPv6 firewalls
 - HTTP seems to be the next generation file transfer protocol with WEBDAV and DELTA
- Other non trivially proxy-able protocol:
 - no support (e.g.: H.323)

L3- L4 Spoofing

- While L4 spoofing remains the same, IPv6 address are globally aggregated making spoof mitigation at aggregation points easy to deploy
- Can be done easier since IPv6 address is hierarchical
- However host part of the address is not protected
 - You need IPv6 <- >MAC address (user) mapping for accountability!

Autoconfiguration/Neighbour Discovery

- Neigbor Discovery ~ security ~ Address Resolution Protocol
 - No attack tools arp cache poisoning
 - No prevention tools dhcp snooping
- DHCPv6 with authentication is possible
- ND with IPSec also possible

Amplification (DDoS) Attacks

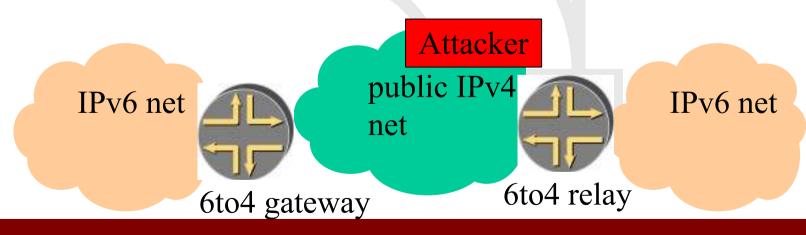
- There are no broadcast addresses in IPv6
 - This would stop any type of amplification attacks that send ICMP packets to the broadcast address
 - Global multicast addresses for special groups of devices, e.g. link-local addresses, etc.
- IPv6 specifications forbid the generation of ICMPv6 packets in response to messages to global multicast addresses
 - Many popular operating systems follow the specification
 - Still uncertain on the danger of ICMP packets with global multicast source addresses

Mitigation of IPv6 amplification

- Be sure that your host implementation follow the RFC 2463 (ICMPv6)
- Implement RFC 2827 (Ingress Filtering)
- Implement ingress filtering of IPv6 packets with IPv6 multicast source address

Other threats

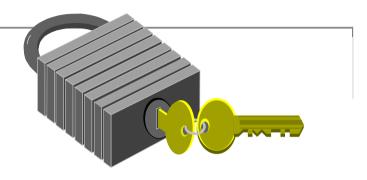
- IPv6 Routing Attack
 - Use traditional authentication mechanisms for BGP and IS-IS.
 - Use IPsec to secure protocols such as OSPFv3 and RIPng
- Viruses and Worms
- Sniffing
 - Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4
- Application Layer Attacks
 - Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent
- Man-in-the-Middle Attacks (MITM)
 - Without IPsec, any attacks utilizing MITM will have the same likelihood in IPv6 as in IPv4
- Flooding
 - Flooding attacks are identical between IPv4 and IPv6


IPv6 transition mechanisms

- ~15 methods possible in combination
- Dual stack:
 - enable the same security for both protocol
- Tunnels:
 - ip tunnel punching the firewall (protocol 41)
 - gre tunnel probable more acceptable since used several times before IPv6

L3 – L4 Spoofing in IPv4 with 6to4

- For example, via 6to4 tunneling spoofed traffic can be injected from IPv4 into IPv6.
 - IPv4 Src: Spoofed IPv4 Address
 - IPv6 Src: 2002:: Spoofed Source


Mixed IPv4/IPv6 environments

- There are security issues with the transition mechanisms
 - Tunnels are extensively used to interconnect networks over areas supporting the "wrong" version of protocol
 - Tunnel traffic many times has not been anticipated by the security policies. It may pass through firewall systems due to their inability check two protocols in the same time
- Do not operate completely automated tunnels
 - Avoid "translation" mechanisms between IPv4 and IPv6, use dual stack instead
 - Only authorized systems should be allowed as tunnel end-points

IPSec

- General IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs, & for the Internet
- IPSec is not a single protocol. Instead, IPSec provides a set of security algorithms plus a general framework that allows a pair of communicating entities to use whichever algorithms provide security appropriate for the communication.
- IPSec is mandated in IPv6 you can rely on for e2e security

Security: IPsec

- Work made by the IETF IPsec wg
- Applies to both IPv4 and IPv6 and its implementation is:
 - Mandatory for IPv6
 - Optional for IPv4
- IPsec Architecture: RFC 2401
- IPsec services
 - Authentication
 - Integrity
 - Confidentiality
 - Replay protection
- IPsec protocols: AH (Authentication Header RFC 2402) & ESP (Encapsulating Security Payload - RFC 2406)

Summary

- IPv6 has potential to be a foundation of a more secure Internet
- Elements of the IPv6 security infrastructure
 - Firewalls, IPSec, AAA, etc.
 are mature enough to be deployed in production environment.
- Other elements are in prototype state
 - CGA, PANA, VPNs

But even these are ready for experimental deployment

