Routing Protocols

2nd South Eastern Europe 6DISS Workshop Plovdiv, Bulgaria 27-29 June 2007

Dimitrios Kalogeras

(dkalo@ntua.gr)

IPv6DISSemination and Exploitation

Copy ... Rights

- This slide set is the ownership of the 6DISS project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorization
- Using part of this material must mention 6DISS courtesy
- PDF files are available from <u>www.6diss.org</u>
- Looking for a contact ?
- Mail to : martin.potts@martel-consulting.ch
- Or bernard.tuy@renater.fr

Contributions

Main authors

- Carlos Friaças, FCCN, Portugal
- Miguel Baptista, FCCN, Portugal
- Contributors
 - Mónica Domingues, FCCN, Portugal
 - Paulo Ferreira, FCCN, Portugal
 - János Mohácsi, NIIF/HUNGARNET, Hungary

Agenda

- Internal Routing
 - Static Routing
 - RIPng
 - IS-IS
 - OSPFv3
- External Routing
 - Multiprotocol BGP

Static Routes

- Static route configuration syntax is the same as in IPv4
- Except Prefix and next-hop are IPv6

IPv4 static route: **ip route [ipv4_prefix][ipv4_address_mask][ipv4_if_address]** IPv6 static route: **ipv6 route [ipv6_prefix/prefix_length][ipv6_if_address]**

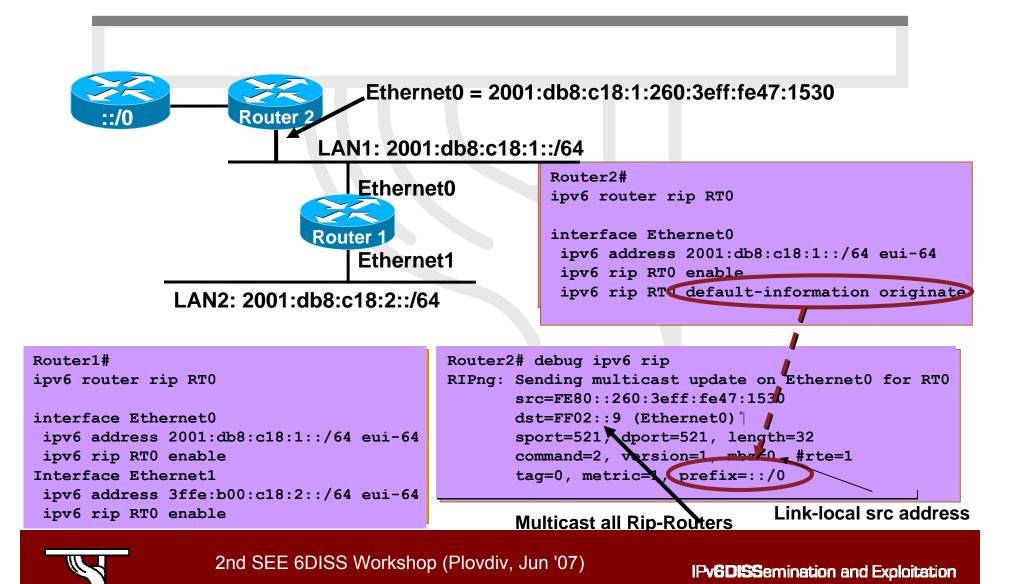
ipv6 route ::/0 FastEthernet1/40 FE80::206:2AFF:FE58:7820

Static Routes

- It is not recommended to use a global unicast address as a next-hop addresss
- ICMPv6 redirect messages will not work if used

RFC 2461:

A router must be able to determine the link-local address of each of its neighboring routers in order to ensure that the target address of a Redirect message identifies the neighbor router by its link-local address.



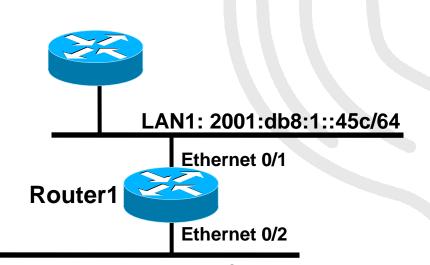
RIPng

- Same as IPv4
 - Based on RIPv2
 - Distance vector, max. 15 hop, split-horizon, ...
- It's an IPv6 only protocol
 - In a dual-stack environment, running RIP, you'll need RIP (IPv4) and RIPng (IPv6)
- IPv6 related functionality
 - Uses IPv6 for transport
 - IPv6 prefix, next-hop IPv6 address
 - For RIP updates, uses multicast address FF02::9
 - Updates are sent on UDP port 521

RIPng Configuration and Display

ISISv6

- OSI Protocol Originally designed as an intradomain routing protocol for Connectionless Network Service (CLNS) traffic
- Based on two levels
 - L2 = Backbone
 - L1 = Stub
 - L2L1= interconnect L2 and L1
- Runs on top of CNLS
 - Each IS device still sends out LSP (Link State Packets);
 - Send information via TLV's (Tag/Length/values)
 - Neighborship process is unchanged
- Major operation remains unchanged


ISISv6 #2

- Updated features:
 - Two new Tag/Length/Values (TLV) for IPv6
 - IPv6 Reachability Describes network reach-ability, contains V6 routing prefix & Metric
 - IPv6 Interface Address
 - » Contains IPv6 interface address (128 bit vs. 32))
 - » For Hello PDUs, must contain the Link-Local address
 - » For LSP, must only contain the non-Link Local address
 - New network Layer Identifier
 - IPv6 NLPID
- Runs on data link. If tunneled, must be mode GRE not IPV6IP

Cisco IOS IS-IS dual IP configuration

LAN2: 2001:db8:2::45a/64

Dual IPv4/IPv6 configuration. Redistributing both IPv6 static routes and IPv4 static routes.

Router1#

interface ethernet0/1
 ip address 10.1.1.1 255.255.255.0
 ipv6 address 2001:db8:1::45c/64
 ip router isis
 ipv6 router isis

```
interface ethernet0/2
ip address 10.2.1.1 255.255.255.0
ipv6 address 2001:db8:2::45a/64
ip router isis
ipv6 router isis
```

```
router isis
   address-family ipv6
   redistribute static
   exit-address-family
   net 42.0001.0000.0000.072c.00
   redistribute static
```

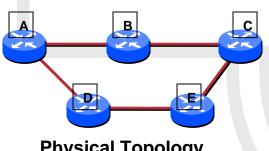

Single SPF rules

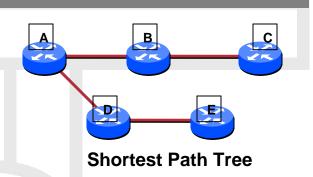
 If IS-IS is used for both IPv4 and IPv6 in an area, both protocols must support the same topology within this area.

Could set "no adjacency-check" between L2 routers

All interfaces configured with IS-ISv6 must support IPv6

Can't be configured on MPLS/TE since IS-ISv6 extensions for TE are not yet defined


 All interfaces configured with IS-IS for both protocols must support both of them


IPv6 configured tunnel won't work, GRE should be used in this configuration

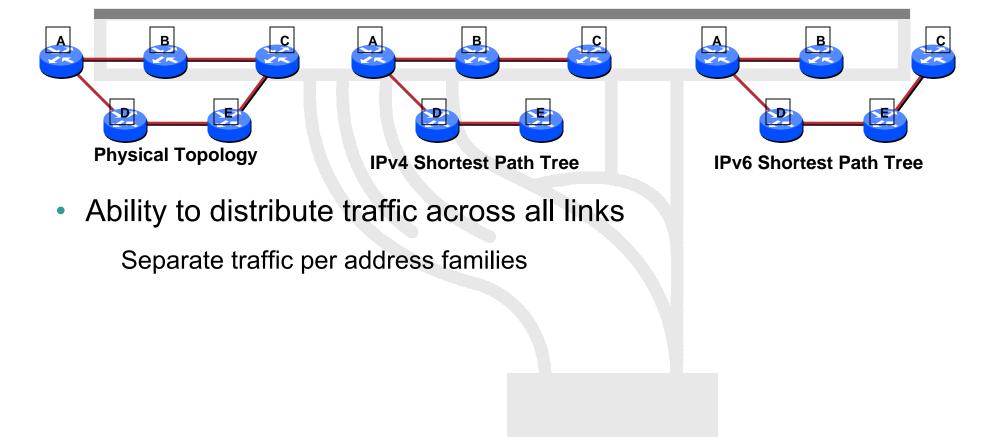
Otherwise, consider Multi-Topology IS-IS (separate SPF)

The problem

Physical Topology

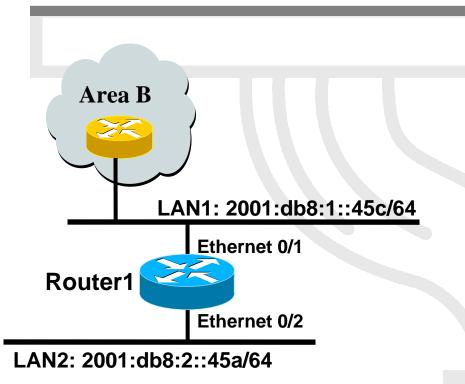
From A perspective, C is only reachable through B

There is no path from E to C


All protocols carried by IS-IS have to agree on the same SPT

No way to distribute traffic across the domain

All links need to understand all protocols



The need

Cisco IOS Multi-Topology IS-IS configuration example

• The optional keyword *transition* may be used for transitioning existing IS-IS IPv6 single SPF mode to MT IS-IS.

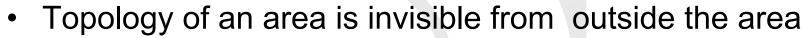
• Wide metric is mandated for Multi-Topology to work.

2nd SEE 6DISS Workshop (Plovdiv, Ju

Router1# interface ethernet 0/1 ip address 10.1.1.1 255.255.255.0 ipv6 address 2001:db8:1::45c/64 ip router isis ipv6 router isis isis ipv6 metric 20

interface ethernet 0/2 ip address 10.2.1.1 255.255.255.0 ipv6 address 2001:db8:2::45a/64 ip router isis ipv6 router isis isis ipv6 metric 20

router isis net 49.0000.0100.0000.0000.0500 metric-style wide ! address-family ipv6 multi-topology exit-address-family


IPVOLISSEMINATION and Exploitation

OSPFv3

Internet

Backbone Area #0

- OSPFv3 = OSPF for IPv6 (RFC 2740)
- Based on OSPFv2

Area #

- LSA flooding is bounded by area
- SPF calculation is performed separately for each area
- All areas must have a connection to the backbone

OSPFv3

- OSPFv3 is an IPv6-only protocol
 - In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6)
 - There is some work-in-progress about extensible mechanisms to enable OSPFv3 with the support for different address families
- Updated Features
 - Runs directly over IPv6 you can use link-locals
 - Distributes IPv6 prefixes
 - New LSA types
 - Uses the Multicast address
 - ALLSPFRouters (FF02::5)
 - ALLDRouters (FF02::6)

What IPv6 Attributes Affect OSPF?

- 128 bit addresses
- Link-Local address
- Multiple addresses per interface
- Authentication

OSPFv3 / OSPFv2 Differences

- OSPFv3 runs over a link, rather than a subnet
- Multiple instances per link
- OSPFv3 topology not IPv6-specific

Router ID

Link ID

- Standard authentication mechanisms (IPSec)
- Uses link-local addresses
- Generalized flooding scope

New LSA Types

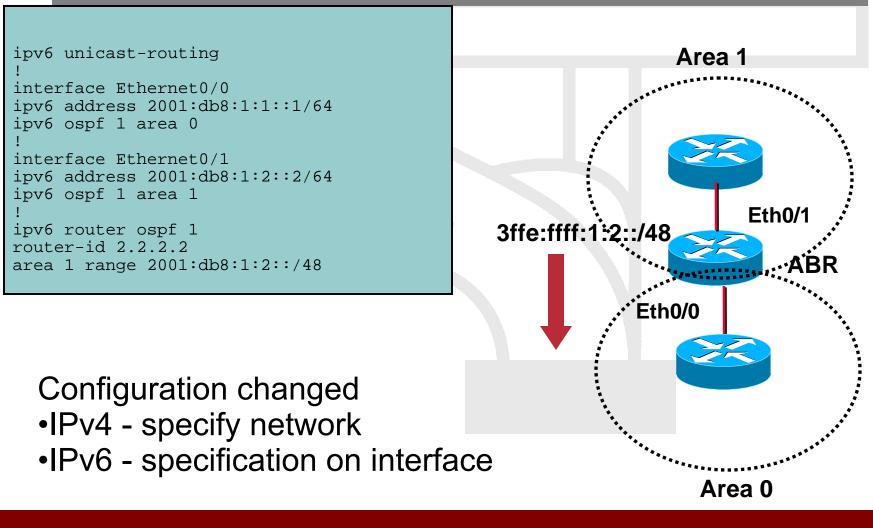
Link LSA

Informs neighbors of link local address Informs neighbors of IPv6 prefixes on link

• Intra-Area Prefix LSA

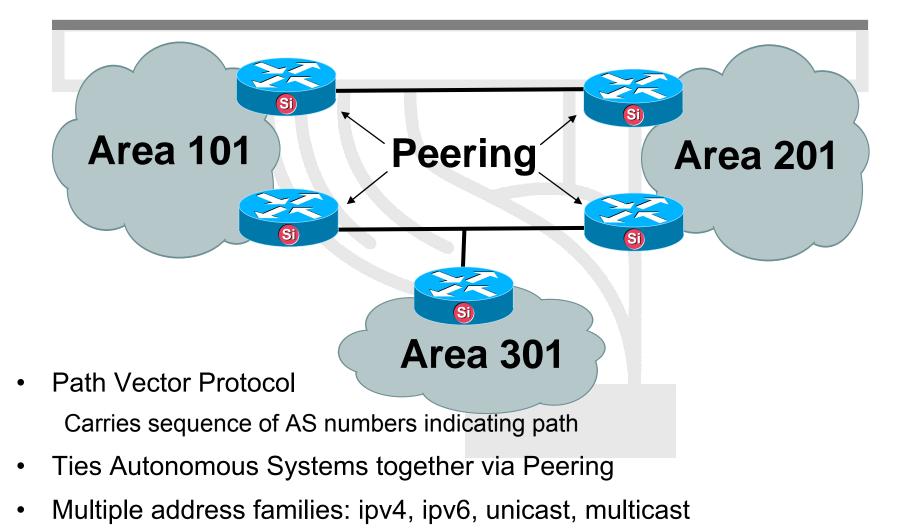
Associates IPv6 prefixes with a network or router

Removal of Address Semantic

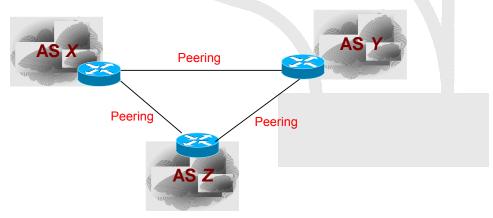

 IPv6 address is not present in OSPFv3 packets

Exception: LSA payload

- Router-LSA and Network-LSA expressing topology
- Router ID, area ID, LSA link state ID remain a 32 bit number
- Neighbors are always identified by Router ID



ABR Configuration



MP-BGP Basics

Multiprocol BGP

- Exterior Gateway Protocol
- Connect separate routing domains that contain independent routing policies (AS)
- Carries sequences of AS numbers indicating path
- Supports the same features and functionality as IPv4 BGP
- Multiple addresses families: IPv4, IPv6, unicast, multicast

Multiprotocol BGP

- BGP4 carries only 3 types of information wich is truly IPv4 specific:
 - NLRI in the UPDATE message contains an IPv4 prefix
 - NEXT_HOP attribute in the UPDATE message contains an IPv4 address
 - BGP ID in AGGREGATOR attribute
- RFC 2858 defines multi-protocols extensions for BGP4
 - this makes BGP4 available for other network layer protocols (IPv6, MPLS...)
 - New BGP4 attributes (optional, transitive):
 - MP_REACH_NLRI
 - MP_UNREACH_NLRI
 - Messages contains triplets:
 - Address Family Information (AFI)
 - Next-Hop Information (must be of the same address family)
 - NLRI
 - Protocol Independent NEXT_HOP attribute
 - Protocol Independent NLRI attribute

BGP-4 Extensions for IPv6

Address Family Information (AFI) for IPv6

AFI = 2 (RFC 1700)

Sub-AFI = 1 Unicast

Sub-AFI = 2 (Mulitcast for RPF check)

Sub-AFI = 3 for both Unicast and Mulitcast

Sub-AFI = 4 Label

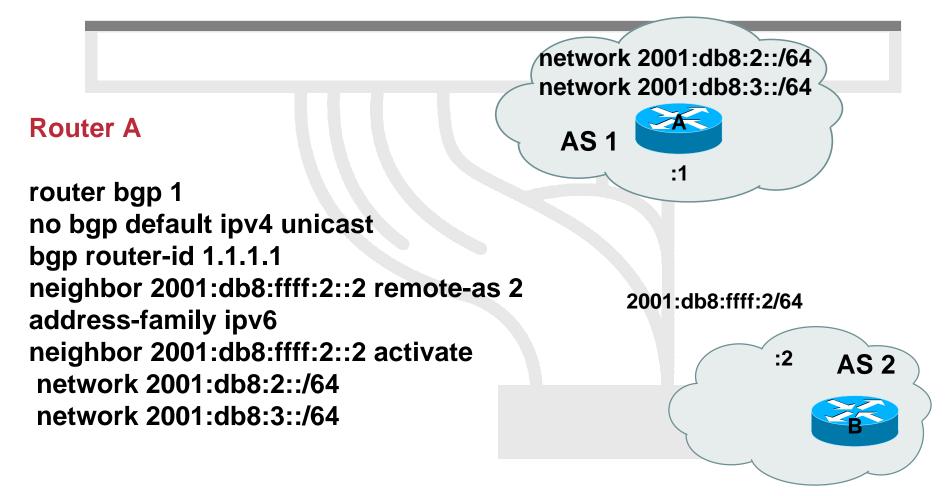
Sub-AFI= 128 VPN

BGP-4 Extensions for IPv6

TCP Interaction

BGP-4 runs on top of TCP

This connection could be setup either over IPv4 or IPv6


Router ID

When no IPv4 is configured, an explicit bgp router-id needs to be configured

This is needed as a BGP Identifier, this is used as a tie breaker, and is send within the OPEN message

BGP-4 Configurations for IPv6

Conclusions

- All major routing protocols have stable IPv6 support
- And there isn't major differences with IPv4
- In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6). It may change in a near future.
- In a dual-stack environment, running RIP, you'll need RIPv1/RIPv2 (IPv4) and RIPng (IPv6)

