
6DISS IPv6 workshop 2006 Kopaonik

IPv6 Security Practice
János Mohácsi

NIIF/HUNGARNET

6DISS IPv6 workshop 2006 Kopaonik

Copy …Rights

• This slide set is the ownership of the 6DIS S project via its
partners

• The Powerpoint version of this material may be reused and
modified only with written authorization

• Using part of this material must mention 6DIS S courtesy

• PDF files are available from www.6diss.org

6DISS IPv6 workshop 2006 Kopaonik

Contributions

• Main authors
– János Mohácsi, NIIF/HUNGARNET -

Hungary

6DISS IPv6 workshop 2006 Kopaonik

Configuring IPv6 Firewalls with
Windows XP SP2

6DISS IPv6 workshop 2006 Kopaonik

Windows XP Firewall configuration

• Windows XP ICF – same rules for IPv4 and IPv6
– Show configuration:

• netsh firewall show config
– Set configuration

• set icmpsetting [type =] 2-5|8-9|11-13|17|ALL [[mode =]
ENABLE|DISABLE [profile =] CURRENT|DOMAIN|STANDARD|ALL
[interface =] name]

• set opmode [mode =] ENABLE|DISABLE [[exceptions =]
ENABLE|DISABLE [profile =] CURRENT|DOMAIN|STANDARD|ALL
[interface =] name]

• add portopening [protocol =] TCP|UDP|ALL [port =] 1-65535
[name =] name [[mode =] ENABLE|DISABLE [scope =] ALL|
SUBNET|CUSTOM [addresses =] addresses [profile =] CURRENT|
DOMAIN|STANDARD|ALL [interface =] name]

• set logging [filelocation=<location>] [filesize=integer]
[droppedpackets=enable|disable] [successfulconnections=enable|
disable]

6DISS IPv6 workshop 2006 Kopaonik

Windows XP Firewall
configuration /2

• After SP2
– in the firewall you can configure Path MTU

discovery support
– per process configuration possible
– Can be deployed by group configuration

6DISS IPv6 workshop 2006 Kopaonik

Windows SP2 ICF

6DISS IPv6 workshop 2006 Kopaonik

Further information

• Further information:
http://www.microsoft.com/technet/community/
columns/cableguy/cg0204.mspx

6DISS IPv6 workshop 2006 Kopaonik

Exercises

1. Test ping from neighbouring PC
2. Enable Firewall on Windows XP SP2
3. Test ping from the neighbouring PC
4. Enable ICMP echo + Path MTU

discovery to work

6DISS IPv6 workshop 2006 Kopaonik

Configuring IPv6 Firewalls with pf

János Mohácsi
NIIF/HUNGARNET

6DISS IPv6 workshop 2006 Kopaonik

What is pf?

• OpenBSD included IPFilter in the default install since 3.0. Included in
FreeBSD since 5.3 (5.x as port) and in NetBSD since 2.0.

• Ideas from ipf which is available for Linux, Solaris, HP-UX, IRIX
additionally to the operating systems above.

• Principles
– working on IP packet level (vs. application level proxies or ethernet level

bridges)
– intercepting each IP packet that passes through the kernel (in and out on

each interface), passing or blocking it
– stateless inspection based on fields of each packet
– stateful filtering keeping track of connections, additional information makes

filtering more powerful (sequence number checks) and easier (replies,
random client ports)

– filtering for local host or network (multihomed host, IP forwarding or
bridging)

6DISS IPv6 workshop 2006 Kopaonik

pf filter rules

• linear linked list, evaluated top to bottom for
each packet (unlike netfilter's chains tree)

• rules contain parameters that
match/mismatch a packet rules pass or block
a packet

• last matching rule wins (except for 'quick',
which aborts rule evaluation)

• rules can create state, further state matching
packets are passed without rule set
evaluation

6DISS IPv6 workshop 2006 Kopaonik

common basic rule syntax

pass|block in|out on <int> [<af>] [proto
<protocol>] from <src_ip> port
<src_port> to <dst_ip> port <dst_port>

<int>: a network interface
<af>: address family: inet or inet6
<protocol: protocol: icmp, tcp, udp, icmp6 etc.
<src_ip>: an IP address (or range)
<src_port>: a TCP or UDP port number
<dst_ip>: an IP address (or range)
<dst_port>: a TCP or UDP port number
| denotes OR, [] denotes optional part

6DISS IPv6 workshop 2006 Kopaonik

common basic rule syntax/2

pass|block in|out on all
• apply a rule to all interfaces, or to all

sources, and to all destinations, and to
all ports the powerful all keyword should
be employed:

6DISS IPv6 workshop 2006 Kopaonik

Small examples

1. block out on tun0 all port 25
2. pass in on fxp0 from 192.168.1.0/24 to

192.168.2.51 port 22
3. pass out on fxp0 from 192.168.2.51 to

192.168.1.0/24 port 22

6DISS IPv6 workshop 2006 Kopaonik

Common basic rule syntax /3

• Quick
– Using the quick keyword in a rule commands PF to apply

the rule immediately. Further rule processing is
abandoned.

• Log
– The all important logging feature is now in use via the log

keyword. Logging is accomplished emitting bpf like log via
virtual network inteface pflog0 that can be collected and
filtered by by the pflogd daemon. Logging can be applied to
any rule.

• link layer header used for pf related information (rule, action)
• Easy to process with tcpdump
• Important: when using log and state keywords in the same rule:

only the packet that establishes the state is logged.

6DISS IPv6 workshop 2006 Kopaonik

State table

• pf can "keep state" or perform "stateful inspection". Stateful
inspection refers to PF's ability to track the state, or progress, of a
network connection. By storing information about each connection in
a state table, PF is able to determine if a packet passing through the
firewall belongs to an already established connection. If it does, it is
passed through the firewall without going through any ruleset
evaluation.
– TCP (sequence number checks on each packet), ICMP error messages

match referred to packet (simplifies rules without breaking PMTU
discoveries etc.)

– UDP, ICMP queries/replies, other protocols: pseudo-connections with
timeouts

– adjustable timeouts (aggressive, normal, high-latency, conservative)
– binary search tree (AVL, now Red-Black), O(log n) even in worst-case
– key is two address/port pairs

6DISS IPv6 workshop 2006 Kopaonik

Ruleset IPv4 1(nothing in, DNS, all TCP,
ping out)

EXT = “bge0"
LAN = “bge1"
LANip4 = "192.168.1.1“
EXTip4 = “192.168.2.1
LANnet4 = "192.168.1.0/24“
Lo4 = “127.0.0.1”
expire state connections early
set optimization aggressive
block in log all
allow DNS requests to go out
pass out on $EXT inet proto udp from {$EXTip4, $Lo4, $LANnet4} to any port=domain keep state
all TCP request allowed out
pass out on $EXT inet proto tcp from {EXTip4, $Lo4, $LANnet4} to any keep state
all ping request allowed out
pass out on $EXT inet proto icmp all icmp-type 8 code 0 keep state
DNS request inside
pass in on $LAN inet proto from $LANnet4 to any port domain
TCP request inside
pass in on $LAN inet proto tcp from $LANnet4 to any
ICMP request inside
pass in on $LAN inet proto icmp all icmp-type 8 code 0

6DISS IPv6 workshop 2006 Kopaonik

Antispoofing
• antispoof, parser generates blocking rules

appropriate for the specified interfaces
antispoof for lo0

block in on !lo0 inet from 127.0.0.1/8 to any
block in on !lo0 inet6 from ::1 to any

antispoof for bge1 #inet/inet6
block in on !bge1 inet from 192.168.1.1/24 to any
block in inet from 192.168.1.1 to any
block in on !bge1 inet6 from 2001:db8:1:2::/64 to
any

block in on !bge1 inet6 from
fe80::209:6bff:fe8c:845b to any

block in inet6 from 2001:db8:1:2::1 to any

6DISS IPv6 workshop 2006 Kopaonik

IPv6 specific rules -reminder

• Neighbor solicitation/neighbor advertisement is
REQUIRED – icmp-type 135/136 (ipv6-icmp-type
neighbrsol/neighbradv)

• For stateless address autoconfiguration router
advertisement and router solicitation REQUIRED–
icmp type 133/134 (ipv6-icmp-type
routersol/routeradv)

• Path MTU discovery – automatic if you use keep-state
– Same applies for Destination unreachable, Time exceeded

and IPv6 Parameter problem messages
– Otherwise you have to build your own rules

6DISS IPv6 workshop 2006 Kopaonik

Supported ICMPv6 types

136

135

134

133

132

132

131

131

130

130

129

128

4

3

2

1

ND neighbor advertisementneighbradv

ND neighbor solicitationneighbrsol

ND router advertisementrouteradv

ND router solicitationroutersol

MLD listener donelistendone

ICMPv6 membership terminationgroupterm

MLD listener reportlistenrep

ICMPv6 membership reportgrouprep

MLD listener querylistqry

ICMPv6 Membership querygroupqry

Echo Replyechorep

Echo Requestechoreq

Parameter problemparamprob

Time Exceededtimex

Packet too bigtoobig

Destination unreachableunreach

6DISS IPv6 workshop 2006 Kopaonik

Supported ICMPv6 types /2

201

200

140

139

140

139

140

139

138

137

MLD Multicast tracemtrace

MLD Multicast trace responsemtraceres
p

Neighbor Information Replynirep

Neighbor Information Querynireq

ICMPv6 Fully Qualified Domain Name Replyfqdnrep

ICMPv6 Fully Qualified Domain Name Queryfqdnreq

Who are you replywrurep

Who are you requestwrureq

ICMPv6 router renumberingrouterrenu
m

ND redirectionredir

6DISS IPv6 workshop 2006 Kopaonik

Ruleset IPv6 1(nothing in, DNS, all
TCP, ping out)

EXT = “bge0"
LAN = “bge1"
LANip6 = “2001:db8:1:1::1“
EXTip6 = “2001:db8:1:2::1”
LANnet6 = “2001:db8:1:1::1/64“
Lo6 = “::1”
expire state connections early
set optimization aggressive
block in log all
allow DNS requests to go out
pass out on $EXT inet6 proto udp from {$EXTip6, $Lo6, $LANnet6} to any port=domain

keep state
all TCP request allowed out
pass out on $EXT inet6 proto tcp from {EXTip6, $Lo6, $LANnet6} to any keep state
all ping request allowed out
pass out on $EXT inet6 proto icmp6 all icmp6-type echoreq keep state
ND solicitation out
pass out on $EXT inet6 proto icmp6 all icmp6-type {neighbradv, neighbrsol}
ND advertisement in
pass in on $EXT inet6 proto icmp6 all icmp6-type {neighbradv, neighbrsol}

6DISS IPv6 workshop 2006 Kopaonik

Ruleset IPv6 1(continue – with
router advertisement from FW)

#router advertisement out
pass out on $LAN inet6 proto icmp6 all icmp6-type routersadv
router solicitation in
pass in on $LAN inet6 proto icmp6 all icmp6-type routerrsol
DNS request inside
pass in on $LAN inet6 proto from $LANnet6 to any port domain
TCP request inside
pass in on $LAN inet6 proto tcp from $LANnet6 to any
ICMP request inside
pass in on $LAN inet6 proto icmp6 all icmp6-type echoreq

6DISS IPv6 workshop 2006 Kopaonik

Ruleset IPv6 2 (allow access to internal
mail & www server – additional rules)

#internal server address
LANSRV6=“2001:db8:1:2::2”
LANSRV4=“192.168.1.2”
#allow incoming connection to SMTP server
pass in on $EXT inet6 proto tcp from any to $LANSRV6 port=25 keep-state
pass in on $EXT inet proto tcp from any to $LANSRV4 port=25 keep-state
#all reply from SMTP server (does not really necessary)
pass in on $LAN inet6 proto tcp from $LANSRV6 port=25 to any keep-state
pass in on $LAN inet proto tcp from $LANSRV4 port=25 to any keep-state
#allow incoming connection to WWW server
pass in on $EXT inet6 proto tcp from any to $LANSRV6 port=www keep-state
pass in on $EXT inet proto tcp from any to $LANSRV4 port=www keep-state
#all reply from SMTP server (does not really necessary)
pass in on $LAN inet6 proto tcp from $LANSRV6 port=www to any keep-state
pass in on $LAN inet proto tcp from $LANSRV4 port=www to any keep-state

6DISS IPv6 workshop 2006 Kopaonik

Problems with IPv6
• No fragment normalisation – not possible! –

fragmentation only at the end-host
• no real support for extension headers – check

existence of extension header possible without
chain processing

• IPv6 fragments are blocked unconditionally
• No IPv6 support in ftp-proxy
• No support to filter inside tunnel – except if

tunnel terminated at firewall

6DISS IPv6 workshop 2006 Kopaonik

Tunnel filtering example -
simplest

pass out on $EXT inet proto ipv6 from
$EXT to $TUNNELREMOTE4 keep state

pass in on $EXT inet proto ipv6 from
$TUNNELREMOTE4 to $ext_if keep
state

pass out on gif0 inet6 all keep state
pass in on gif0 inet6 all keep state

6DISS IPv6 workshop 2006 Kopaonik

More restrictive IPv6 rules

• Allow Rtsol/rtadv on a more specific address
pass out on $LAN inet6 proto ipv6-icmp from fe80::/16
to ff02::2 icmp6-type routersol code 0

pass in on $LAN inet6 proto ipv6-icmp from fe80::/16
to ff02::1 icmp6-type routeradv code 0

pass in on $LAN inet6 proto ipv6-icmp from fe80::/16
to fe80::/16 icmp6-type routeradv code 0

• Allow NDsol/Ndadv on more specific address
pass out on $if inet6 proto ipv6-icmp from { ::
fe80::/16 } to ff02::/16 icmp6-type grouprep code 0

pass out on $if inet6 proto ipv6-icmp from ($if) to
any icmp6-type neighbrsol code 0

pass in on $if inet6 proto ipv6-icmp from any to
($if) icmp6-type neighbradv code 0

6DISS IPv6 workshop 2006 Kopaonik

Further Information

• Further information
– The OpenBSD pf FAQ:

• http://www.openbsd.org/faq/pf/index.html

– Tons of information:
• http://www.benzedrine.cz/pf.html
• mailing list with archive

http://www.openbsd.org/faq/pf/index.html
http://www.benzedrine.cz/pf.html

6DISS IPv6 workshop 2006 Kopaonik

Demonstration

1. Small set of pf rules for personal firewall:
#block everything
block in log all
block out log all
#allow everything for loopback
pass in quick on lo0 all
pass out quick on lo0 all
#allow all outgoing packets
pass out quick proto tcp from $ext_if to any keep state
pass out quick proto udp from $ext_if to any keep state
pass out quick inet proto icmp from $ext_if to any keep state
pass out quick proto ipv6-icmp from any to any keep state
pass in quick proto ipv6-icmp from any to any
pass in quick proto tcp from any to any port = 22

6DISS IPv6 workshop 2006 Kopaonik

Demonstration/2

1. Disable ssh access
2. Disable ICMPv6 packets

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS
IPv6 Access Control Lists

Patrick Grossetete
Cisco IOS IPv6 Product Manager

Pgrosset@cisco.com

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 Standard
Access Control Lists

• Cisco IOS IPv6 access-lists are used to filter traffic and
restrict access to the router. IPv6 prefix-lists are used to
filter routing protocol updates.

• IPv6 Standard ACL (Permit/Deny)
– IPv6 source/destination addresses
– IPv6 prefix-lists
– On Inbound and Outbound interfaces

• Minimum Cisco IOS releases
– Cisco IOS 12.2(2)T or 12.3(1)M
– Cisco IOS 12.0(21)ST1 and Cisco 12.0(22)S on Cisco 12000

series only
– Cisco 12.2(14)S

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 Extended
ACL

• Adds support for IPv6 option header and upper layer
filtering

• Only named access-lists are supported for IPv6
• IPv6 and IPv4 ACL functionality

– Implicit deny any any as final rule in each ACL.
– A reference to an empty ACL will permit any any.
– ACLs are NEVER applied to self-originated traffic.

• Minimum Cisco IOS releases
– Cisco IOS 12.2(13)T or 12.3(1)M
– Cisco 12.0(23)S on Cisco 12000 series only, 12.0(25)S

adds hardware assisted ACL on Engine 3
– Cisco 12.2(14)S

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 Extended
ACL overview

• CLI mirrors IPv4 extended ACL CLI
• Implicit permit rules, enable neighbor

discovery
• ULP, DSCP, flow-label,… matches
• Logging
• Time-based
• Reflexive
• CEFv6 and dCEFv6 ACL feature support
• Extended ACL can apply even if option

headers are in a packet

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 ACL Implicit
Rules

• Implicit permit rules, enable neighbor
discovery
– The following implicit rules exist at the end

of each IPv6 ACL to allow ICMPv6
neighbor discovery:
permit icmp any any nd-na
permit icmp any any nd-ns
deny ipv6 any any

– Be careful, when you add “deny ipv6 any
any log” at the end

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 Extended
ACL Match

• TCP/UDP/SCTP and ports (eq, lt, gt, neq,
range)

• ICMPv6 code and type
• Fragments
• Routing Header
• Undetermined transport

– The first unknown NH can be matched against
(numerically rather than by name).

– Since an unknown NH cannot be traversed, the
ULP cannot be determined.

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 Extended
ACL

• Logging
– (conf-ipv6-acl)# permit tcp any any log-input

(conf-ipv6-acl)# permit ipv6 any any log
• Time based

– (conf)# time-range bar
(conf-trange)# periodic daily 10:00 to 13:00
(conf-trange)# ipv6 access-list tin
(conf-ipv6-acl)# deny tcp any any eq www time-
range bar
(conf-ipv6-acl)# permit ipv6 any any

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 ACL Reflexive

• Reflect
– A reflexive ACL is created dynamically,

when traffic matches a permit entry
containing the reflect keyword.

• Evaluate
– Apply the packet against a reflexive ACL.
– The implicit deny any any rule does not

apply at the end of a reflexive ACL;
matching continues after the evaluate in
this case.

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 ACL CLI (1)

• Entering address-family sub-mode
– [no] ipv6 access-list <name>
– Add or delete an ACL.

• IPv6 address-family sub-mode
– [no] permit | deny ipv6 | <protocol> any | host <src> |

src/len [sport] any | host <dest> | dest/len [dport] [reflect
<name> [timeout <secs>]] [fragments] [routing] [dscp
<val>] [flow-label <val>][time-range <name>] [log | log-
input] [sequence <num>]

– Permit or deny rule defining the acl entry. Individual
entries can be inserted or removed by specifying the
sequence number.

– Protocol is one of TCP, UDP, SCTP, ICMPv6 or NH value.

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 ACL CLI (2)

– [no] evaluate
– Evaluate the dynamically created acl via the permit reflect

keyword.
– [no] remark
– User description of an ACL.

• Leaving the sub-mode
– exit

• Showing the IPv6 ACL configuration
– # show ipv6 access-list [name]

show access-list [name]
• Clearing the IPv6 ACL match count

– # clear ipv6 access-list [name]
clear access-list [name]

6DISS IPv6 workshop 2006 Kopaonik

Cisco IOS IPv6 ACL CLI (3)
• Applying an ACL to an interface

– (config-int)# ipv6 traffic-filter <acl_name> in | out
• Restricting access to the router

– (config-access-class)# ipv6 access-class
<acl_name> in | out

• Applying an ACL to filter debug traffic
– (Router)# debug ipv6 packet [access-list

<acl_name>] [detail]

6DISS IPv6 workshop 2006 Kopaonik

Further Information

• Further information:
– http://www.cisco.com/go/ipv6

6DISS IPv6 workshop 2006 Kopaonik

ACL Exercises

6DISS IPv6 workshop 2006 Kopaonik

Exercises: Access Controls

• How to filter, both on router and clients
• First step is to protect router configs (e.g. vty)
• Second router traffic filters c.f. IPv4 access

lists
• Finally per-node filtering
• Strategy: Deny 23/tcp at the edge (i.e.

workgroup router), then pick other protocols
individually on nodes, e.g. http on client 1, ssh
on 2, etc.

6DISS IPv6 workshop 2006 Kopaonik

Exercise 1: ACLs on line vty

• Define an access-class as per IPv4
– Use symbolic names rather than class

indexes of a particular range
• Bind that access-class to a line definition
• Test

6DISS IPv6 workshop 2006 Kopaonik

Exercise 2: ACLs on forwarding

• ACLs can also be bound to interfaces to
impact on the traffic that can be routed
through a router.

• Use ACLs to achieve three filters:
– block SSH connections coming in from two of the

other teams, but not all
– block HTTP access anyone outside of the

workshop
– block all outbound SMTP traffic from a certain ip

range

6DISS IPv6 workshop 2006 Kopaonik

IPSec with OSPFv3 on Cisco
routers

6DISS IPv6 workshop 2006 Kopaonik

Configuring IPSec on OSPF for IPv6

• OSPF for IPv6 configured – define
security policy:
– SPI
– Key

• In Cisco IOS you can configure OSPFv3
security policy per:
– area
– interface

6DISS IPv6 workshop 2006 Kopaonik

OSPv3 IPSec Authentication
configuration

• Defining IPSec Authentication on an Interface
interface type number
ipv6 ospf authentication ipsec
spi spi md5 [key-encryption-type]
key | null

• Defining Authentication in an OSPF Area
ipv6 router ospf process-id

area area-id authentication ipsec spi
spi md5 [key-encryption-type] key

• Debug
show crypto ipsec sa ipv6

6DISS IPv6 workshop 2006 Kopaonik

Configuration steps in MQC
• Define Class Map

– Separate traffic into classes based on access lists
(ACLs), DSCP/ToS, MPLS EXP, protocol, etc. or
combinations of those criteria
class-map [match-any | match-all] class-name

• Define Policy Map (Service Policy)
– Associate a class map with one or more QoS

policies, e.g. bandwidth allocation, queue
management, (re)-marking
policy-map policy-map-name

6DISS IPv6 workshop 2006 Kopaonik

IPv6 QoS configuration on
Cisco routers

6DISS IPv6 workshop 2006 Kopaonik

Configuration steps in MQC
• Apply a Service Policy to an interface

– Associate a policy map to an physical or logical
interface at input or output.
service-policy {input | output} policy-map-name

6DISS IPv6 workshop 2006 Kopaonik

Configuration examples
class-map match-any
ip_premium_out

match ip dscp 46

match ip dscp 47

match ip dscp 40

match mpls experimental 5

class-map match-any lbe_out

match ip dscp 8

match mpls experimental 1

IP Premium
classification

class-map

LBE
classification

class-map

6DISS IPv6 workshop 2006 Kopaonik

Configuration examples
policy-map QoS_out

class ip_premium_out
priority

class lbe_out
bandwidth percent 1

class class-default
exit

exit

interface POS 0/1
service policy output QoS_out

QoS policy
definition

policy-map

Apply
service policy
to an interface

