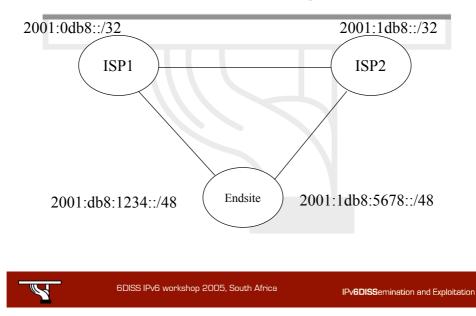

# Multihoming

or provider independent addressing (possible usage) János Mohácsi NIIF/HUNGARNET




# Multihoming Issues

- Many sites are multihomed in the current Internet
  - reliability
  - stability which provider will stay in business?
  - competition
- In IPv4 we can use provider-independent addresses, or 'poke holes' in the aggregation
- But all globally aggregatable IPv6 addresses are provider-assigned!

| <u> </u> | 6DISS IPv6 workshop 2005, South Africa | IPv <b>6DISS</b> emination and Exploitation |
|----------|----------------------------------------|---------------------------------------------|
|----------|----------------------------------------|---------------------------------------------|

### Multihoming



# Problems With Multiple Addresses

- Host or Applications chooses from several global addresses:
  - choice should be based on the policy, not conflict with routing intentions and can break connectivity
- Address selection rules are complex and controversial: RFC 3484 - may be configurable centrally – at enterprise environment at least – draft/study exists



# Problems With Provider-Independent

- Current protocols (BGP) can only control routing table growth if routes are aggregated.
- More than 10000 sites are multihomed today, but that number is constantly increasing.
- The IPv6 address space is very large
  - routing table growth could be problematical with the capability of the current hardware and protocols.

IPv6DISSemination and Exploitation



#### What To Do?

- IPv6 deployment on a large scale without multihoming support is rather problematical.
- It seems likely that there will be shortterm fixes to allow v6 deployment, and long-term solutions.
- For now, we have some options. . .

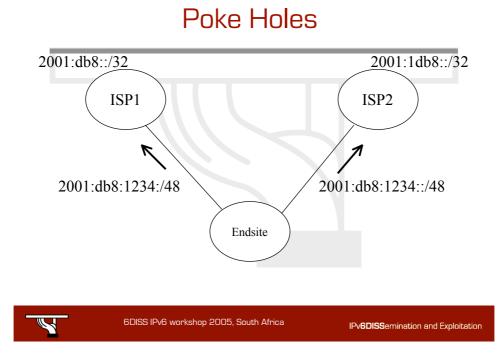
| <b>N</b> | 6DISS IPv6 workshop 2005, South Africa | IPv6DISSemination and Exploitation |
|----------|----------------------------------------|------------------------------------|
|          |                                        |                                    |

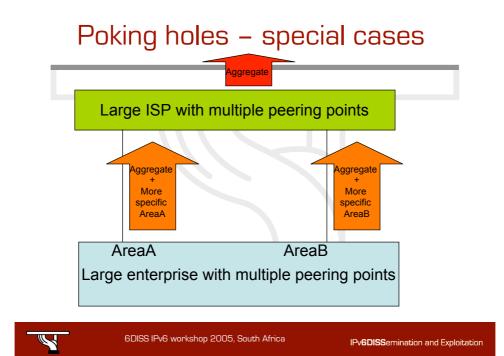
# Get PI Space

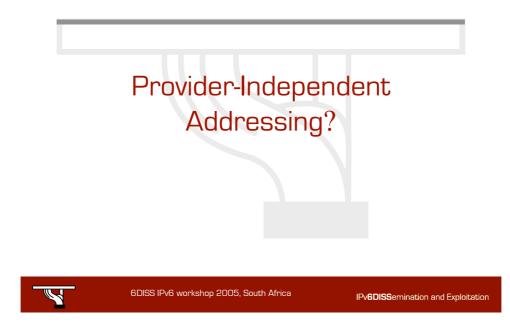
- Getting / 32 (currently the PI address) is rather easy.
- But it is probably large/medium ISPs and NRENs can get.

IPv6DISSemination and Exploitation

 The IPv6 peerings should be more common among thems – but routing table will be very large!





# Poking Holes – announcing more specifics


- The standard practice in IPv4 is to get addresses from one ISP, and advertise that space to all of our providers - effectively making it a PI address.
- In the v6 world, most providers probably won't advertise a foreign prefix to their peers, but will carry it within their own network.- may be changing in time
- Requires that one ISP be designated as the transit provider, and others are effectively peers

   it is working very well at research communities: NRENs









# Pl Multihoming – based on geography

- One possible answer to the multihoming/multiple address problem is the use of addresses determined by geography.
- Each site uses the location of its ISP demark to determine its PI address space
   put your GPS on top of your router <sup>(1)</sup>



# **PI Address Calculation**

 Latitude/Longitude each converted to a 22-bit binary number

40.0433N, 23.2781E =

- Two values concatenated, latitude first
- X412:1220:6cd9::/48
- X because this scheme is not yet approved, but the expectation is that 1 will be used.

IPv6DISSemination and Exploitation



# PI Address Calculationinterleaving

• Why interleave? So that as the prefix gets longer, the area included in the prefix gets smaller:

| bits |    | degrees              | nomina | al square | scope        | sites    |
|------|----|----------------------|--------|-----------|--------------|----------|
|      |    | 90.00000             | 10000  | km        | <u> </u>     |          |
| 8    | -> | 22.50000             | 2500   | km        |              |          |
| 12   | -> | 5.625000             | 600    | km        | zone         |          |
| 16   | -> | 1.406250             | 150    | km        | region       |          |
| 20   | -> | 0.3515625            | 40     | km        | metro        | 16777216 |
| 24   | -> | 0.087890625          | 10     | km        | city         | 1048576  |
| 28   | -> | 0.02197265625        | 2.5    | km        | locality     | 65536    |
| 32   | -> | 0.0054931640625      | 600    | m         | neighborhood | 4096     |
| 36   | -> | 0.001373291015625    | 150    | m         | block        | 256      |
| 40   | -> | 0.00034332275390625  | 40     | m         | lot          | 16       |
| 44   | -> | 0.000085830688476562 | 25 10  | m         | site         | 1        |

### **PI Address Calculation**

- If all the ISPs in an area meet at a local exchange, they may be able to aggregate PI addresses to some degree. – IX should be neutral! – regional traffic routed locally
- But using PI will inevitably mean that more prefixes are carried in the default-free zone (DFZ) at the core of the Internet.

IPv6DISSemination and Exploitation



# PI Multihoming

- Proposed format: draft-hain-ipv6-pi-addr-02.txt
- Usage discussion: draft-hain-ipv6-pi-addr-use-02.txt
- Remember, this is NOT a standard yet!

6DISS IPv6 workshop 2005, South Africa

### PI multihoming using AS number

IPv6DISSemination and Exploitation

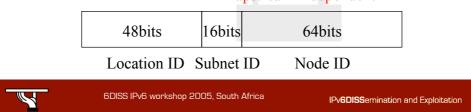
IPv6DISSemination and Exploitation

 Using AS number as a base to generate Pl address: draft-savola-multi6-asn-pi-01.txt AS1955: 0x07a3
 After AS you might get IPv6 address automatically: /32 prefix: 2000:07a3::/32 /48 prefix: 2001:0:07a3::/48



# Route Selection

for End-to-End Multihoming


#### draft-ohira-assign-select-e2e-multihome-03.txt

- Goal:
  - Small networks such as a home network or an office network with multiple upstream ISPs
  - So called ISP multi-homing is NOT addressed
- Method:
  - Hierarchical Addressing (Multi-address model)
  - Source Address Based Routing (SABR)

| 6DISS IPv6 workshop 2005, South Africa IPv6DISSemination and Exp | loitation |
|------------------------------------------------------------------|-----------|
|                                                                  |           |

# Conditions of a Target Site

- Small site as a home network
- A / 48 address space for a site
   assemble a network flexibly
- Multi links & multi exit routers
- Lower 80 bits are set up in advance
   upstream independent —



þ

# Route/Address Information Management Mechanism (1/2)

#### • Kinds of information

- from site external (address delegating)
  - Delegated PA address prefix
  - Proper exit router for each PA address prefix
- site internal
  - State of links in a site
  - State of links which site exit routers have



# Route/Address Information Management Mechanism (2/2)

- Candidate methods to carry the information
  - from site external (address delegating)
    - manual configuration
    - DHCP with prefix option (an I-D is proposed by dhc wg)
      - server: some node in upstream ISP side
      - client: site exit routers
  - site internal
    - manual configuration
    - IGPs with SABR extension



6DISS IPv6 workshop 2005, South Africa

IPv6DISSemination and Exploitation

# Setup of SABR

- FreeBSD/NetBSD/OpenBSD
  - pf (packet filter)
    - pass out quick route-to (dcO fe80::1) from 2001:db8:7000:f00::/64 to any
    - pass out quick route-to (dc1 fe80::1) from 2001:1db8:190:f00::/64 to any
- NetBSD (1.6.1)
  - ICMP Extension & ipfilter (need some modifications)
    - route add default fe80::1%fxp0
    - route add default fe80::2%fxp0 -sabrnet 2001:db8:190:f80::
       -sabrmasklen 64
- Cisco (after 105-12.3[7]T) Intention to link this with
   \_\_\_\_\_\_\_ DHCP/RA.

6DISS IPv6 workshop 2005, South Africa IPv6DISSemination and Exploitation

# Source Address Based Routing (SABR)

- Select an external connection from multiple entries according to a source address
- Pros:
  - No route information from outside
  - No tunnels
  - No servers to mapping between src/dst address
  - No labels nor extensible headers
- Con:
  - Most of intermediate routers and interior gateway routing protocols in a site must be modified

IPv6DISSemination and Exploitation



# Multihoming with tunnels

RFC 3178 (Informational)

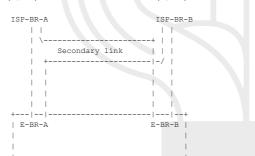
IPv6DISSemination and Exploitation

IPv6DISSemination and Exploitation

# RFC3178 context

Very little assumption on ISP

6DISS IPv6 workshop 2005, South Africa


- No changes in Router/Hosts
- Copes with p2p link ISP
   Reduce downtime
- May require ISP cooperation

6DISS IPv6 workshop 2005, South Africa

• Simple elegant solution

# RFC3178 proposal

- Configuration of secondary links
- Announce lower preference router over secondary links  $_{({\tt ISP A})}$   $_{({\tt ISP B})}$



| <u> </u> | 6DISS IPv6 workshop 2005, South Africa | IPv <b>6DISS</b> emination and Exploitation |
|----------|----------------------------------------|---------------------------------------------|

# RFC 3178 - initial setup

| Get Address from multiple ISP -     | route them locally                                       |
|-------------------------------------|----------------------------------------------------------|
| • IPv6: End host can get multiple a | ddress or, single address                                |
| (ISP A)                             | (ISP B)                                                  |
| ISP-BR-A                            | ISP-BR-B                                                 |
|                                     |                                                          |
| Primary lin}                        | ςΙ                                                       |
|                                     |                                                          |
| 1                                   |                                                          |
| +                                   |                                                          |
| E-BR-A                              | E-BR-B                                                   |
|                                     |                                                          |
| Pref-A <                            | > Pref-B                                                 |
| +                                   | +                                                        |
|                                     |                                                          |
| 6DISS IPv6 workshop 2005            | 5, South Africa IPv <b>6DISS</b> emination and Exploitat |

#### RFC 3178 – link failure

| <ul> <li>Link to ISP-A is down, secondary link is used, reachability<br/>guaranteed, convergence depends on the routing protocol used</li> </ul> |             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| (ISP A)                                                                                                                                          | (ISP B)     |  |  |
| ISP-BR-A                                                                                                                                         | ISP-BR-B    |  |  |
| . \<br>. Secondary lin                                                                                                                           | + .  <br>]- |  |  |
| . secondary 111                                                                                                                                  |             |  |  |
|                                                                                                                                                  |             |  |  |
|                                                                                                                                                  |             |  |  |
|                                                                                                                                                  |             |  |  |
|                                                                                                                                                  | i i         |  |  |
| +                                                                                                                                                | +           |  |  |
| E-BR-A                                                                                                                                           | E-BR-B      |  |  |
|                                                                                                                                                  | I           |  |  |
|                                                                                                                                                  |             |  |  |
| +                                                                                                                                                | +           |  |  |
|                                                                                                                                                  |             |  |  |
|                                                                                                                                                  |             |  |  |

IPv6DISSemination and Exploitat

Not quite multihoming – ULA (Unique Local Addresses)

János Mohácsi NIIF/HUNGARNET



#### **ULA** Features

- Globally unique prefix.
- Well known prefix to allow for easy filtering at site boundaries.
- Allows sites to be combined or privately interconnected without creating any address conflicts or require renumbering of interfaces using these prefixes.
- Internet Service Provider independent and can be used for communications inside of a site without having any permanent or intermittent Internet connectivity.
- If accidentally leaked outside of a site via routing or DNS, there is no conflict with any other addresses.
- In practice, applications may treat these address like global scoped addresses.
- These addresses are also candidates for end-to-end use in some classes of multihoming solutions.

| <u> </u> | 6DISS IPv6 workshop 2005, South Africa | IPv <b>6DISS</b> emination and Exploitation |
|----------|----------------------------------------|---------------------------------------------|
|----------|----------------------------------------|---------------------------------------------|

#### Format

| 7 1                                                                   | 40                                                                        | 16                                                                                              | 64           |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|--|
| Prefix <sub>L</sub>                                                   | Global<br>ID                                                              | Subnet<br>ID                                                                                    | Interface ID |  |
| Prefix                                                                | 7-bit Prefix to identify Local IPv6 unicast addresses (FC00::/7 assumed ) |                                                                                                 |              |  |
| L                                                                     | Local/                                                                    | Local/Global assignments                                                                        |              |  |
| Global ID                                                             | global                                                                    | 40-bit Global identifier used to create a<br>global unique prefix (1.1 trillion<br>assignments) |              |  |
| Subnet ID                                                             | 16-bit subnet ID is an identifier of a subnet within the site             |                                                                                                 |              |  |
| Interface ID                                                          | ace ID 64-bit Interface ID                                                |                                                                                                 |              |  |
| 6DISS IPv6 workshop 2005, South Africa IPv6DISSemination and Exploite |                                                                           |                                                                                                 |              |  |

# Global ID

- Generated with a SHA1 based pseudo-random algorithm (specified in draft)
- Two allocations approaches
  - FCOO::/8 Centrally assigned
  - FDOO::/8 Locally assigned
- Centrally assigned
  - Allows for higher likelihood of uniqueness
  - Escrowed to allow for resolution of duplicate assignment conflicts
- Locally Assigned
  - Generated locally without any central coordination

| 6DISS IPv6 workshop 2005, South Africa | IPv6DISSemination and Exploitation |
|----------------------------------------|------------------------------------|
|----------------------------------------|------------------------------------|

### Centrally assigned

- Single allocation authority to ensure uniqueness and allow for conflict resolution
- Requirements
  - Available to anyone in an unbiased manner
  - Permanent with no periodic fees
  - One time non-refundable allocation fee very low cost per allocation
  - The ownership of each individual allocation should be private, but should be escrowed
- Public Internet Registry (PIR) used as example of allocation authority

IPv6DISSemination and Exploitation

IANA to establish

# Locally assigned

- Locally generated Global ID with pseudorandom algorithm
  - Reasonable likelihood of uniqueness
- No need to contact a assignment authority or ISP

6DISS IPv6 workshop 2005, South Africa

### **ULA-Review**

IPv6DISSemination and Exploitation

IPv6DISSemination and Exploitation

- Simple no registration or approval required
  - Local and Central allocation
- Stable addresses
  - Yes, permanent allocations independent of an ISP or ISP connectivity state
- Private
  - Yes, easy to filter on FCOO::/7 prefix
- Multiple link operation
  - Yes, 16-bit subnet field
  - Compatible with RFC3177



# ULA - Review/2

- Compatible with any site naming system
  - Yes, unique prefix and resulting addresses
- Unambiguous prefixes
  - Yes, pseudo-random generated with local and centralized allocation
- Compatible with VPN
  - Yes, unique prefixes all for inter-site communications and restricted routing

| 6DISS IP | /6 workshop 2005, South Africa | IPv <b>6DISS</b> emination and Exploitation |
|----------|--------------------------------|---------------------------------------------|
|----------|--------------------------------|---------------------------------------------|

# ULA-Review/3

- Makes renumbering easier
  - Internal communication stable ULA
  - External communication Global address based on names
  - VPNs are problematical
- Proper RFC 3484 implementation is a MUST!
- Proper ICMPv6 error handling is necessary blackhole has bad side effects for TCP
- May break IPv6 multicasting ULA is global address

6DISS IPv6 workshop 2005, South Africa

See more on Network Architecture Protection

IPv6DISSemination and Exploitation