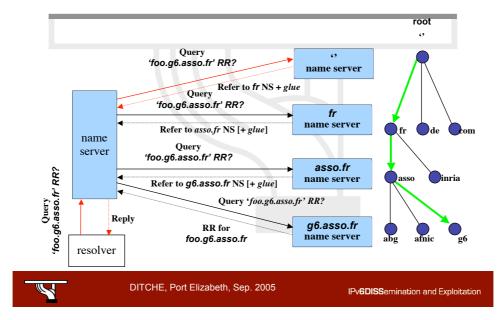
IPv6 support in the DNS

- Getting the IP address of the remote endpoint is necessary for every communication between TCP/IP applications

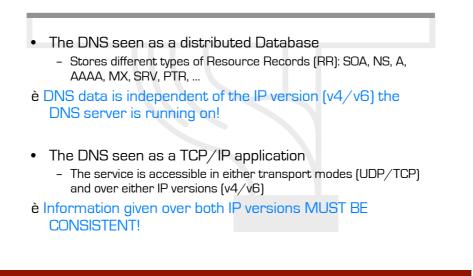
DITCHE, Port Elizabeth, Sep. 2005


- Humans are unable to memorize millions of IP addresses (specially IPv6 addresses)
- To a larger extent: the Domain Name System (DNS) provides applications with several types of resources (domain name servers, mail exchangers, reverse lookups, ...) they need
- DNS design
 - hierarchy
 - distribution
 - redundancy
 - simplicity

DITCHE, Port Elizabeth, Sep. 2005

IPv6DISSemination and Exploitation

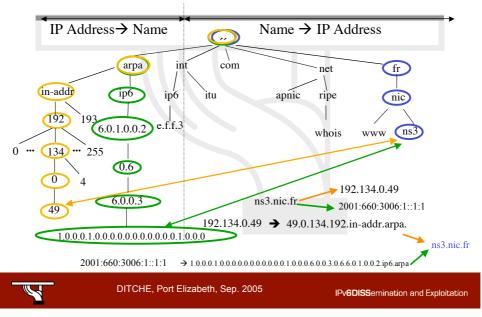
DNS Resource Lookup

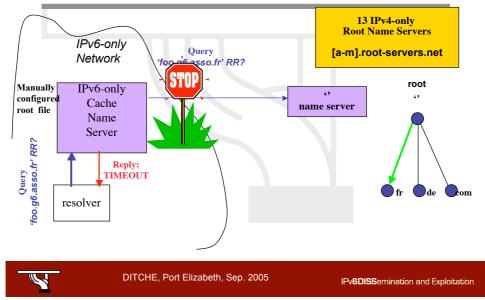

DNS Extensions for IPv6

RFC 1886 →RFC 3596	(upon suc	cessful inte	roperability tests)			
AAAA : forward lookup ('Name IPv6 Address'): Equivalent to 'A' record Example:						
ns3.nic.fr.	IN IN	А АААА	192.134.0.49 2001:660:3006:1::1:1			
PTR : reverse lookup ('IPv6 Address Name'): Reverse tree equivalent to in-addr.arpa New tree: ip6.arpa (under deployment) Former tree: ip6.int (deprecated)						
Example: \$ORIGIN 1. 0.0.0 .6.0.0. 1. 0.0.0 .1. 0.0.0.0.0						

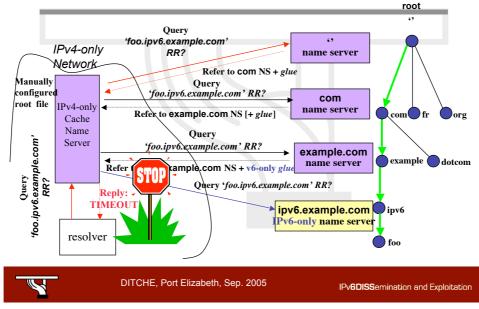
DITCHE, Port Elizabeth, Sep. 2005

The Two Approaches to the DNS




IPv6DISSemination and Exploitation

DITCHE, Port Elizabeth, Sep. 2005


Lookups in an IPv6-aware DNS Tree

DNS Service Continuity through IP Networks

DNS Service Continuity through IP Networks (2)

About Required IPv6 Glue in DNS Zones

IN		rsm.rennes.e	nst-bretagne.fr	r. fradin.rennes.enst-bretagne.fr.
		;retry ;expire}		
	IN IN	NS NS	rsm univers.enst-bi	retagne.fr.
IN	NS	ns3.nic.fr.	ipv6	
рv6			А АААА	192.108.119.134 2001:660:7301:1::1
	IN IN IN	IN NS IN NS IN NS IN NS	IN NS rhadamanthe. IN NS rhadamanthe. IN NS rsm	IN NS univers.enst-bu IN NS rhadamanthe.ipv6 IN NS ns3.nic.fr. IN NS rsm pv6 IN A

IPv4 glue (A 192.108.119.134) is required to reach rhadamanthe over IPv4 transport IPv6 glue (AAAA 2001:660:73001:1::1) is required to reach rhadamanthe over IPv6 transport

IPv6 Support for the Root Servers

Why not?

- No room available for an extra root server IP(v4/v6) address
- DNS response size limit is 512 bytes unless EDNS.0 is used
- "IPv6 infrastructure is not mature yet for the operation of the root servers" – not a valid argument!
- Homework done first...
 - RS.NET Testbed: http://www.rs.net/
 - Test and prove that new technologies (IPv6, DNSsec, IDN) are harmless
 - Several TLDs participate in the testbed (FR, JP, SE, ...)
- Who can put AAAA Glue Records in the Root Zone?
 - IANA/ICANN

DITCHE, Port Elizabeth, Sep. 2005

IPv6 DNS and root servers

- DNS root servers are critical resources!
- 13 roots « around » the world (#10 in the US)
- Need for (mirror) root servers to be installed in other locations (EU, Asia, Africa, ...)
- New technique : anycast DNS server
 - To build a clone from the master/primary server
 - Containing the same information (files)
 - Using the same IP address
 - Such anycast servers have already begun to be installed :
 - F root server : Ottawa, Paris (Renater), Hongkong, Lisbon (FCCN), Dubai, ...
 - K root : London, Amsterdam, ...
 - Look at http://www.root-servers.org for the complete and updated list.

DITCHE, Port Elizabeth, Sep. 2005	IPv6DISSemination and Exploitation

DNS Discovery

- A Stub Resolver needs a Recursive Name Server address for name resolution and a Search Path
- In IPv4 world, the DNS parameters are:
 - Either configured manually in the stub resolver (e.g. /etc/resolv.conf)
 - Or discovered via DHCPv4
- In IPv6 world:
 - Proposals for DNS Discovery:
 - Under discussion IETF ipv6/dnsop WGs
 - Stateless Discovery: RA-Based vs Stateful Discovery: DHCPv6[light]
 - Well-known address (anycast or unicast): seems to be out of date

DITCHE, Port Elizabeth, Sep. 2005

DNSv6 Operational Requirements & Recommendations

- The target today IS NOT the transition from an IPv4-only to an IPv6-only environment
- It IS RATHER EASY to get from an IPv4-only to a mixed v4/v6 environment where:
 - Some systems will remain IPv4-only
 - Some systems will be dual-stacked
 - Some systems will be IPv6-only
- How to get there?
 - Start by testing DNSv6 on a small network and get your own conclusion that DNSv6 is harmless, but remember:
 - The server (host) must support IPv6
 - And DNS server software must support IPv6
 - Deploy DNSv6 in an incremental fashion on existing networks
 - DO NOT BREAK something that works fine (production IPv4 DNS)!

DNSv6 Operational Requirements & Recommendations #2

- How to get there? (cont.)
 - For new large IPv6-only networks: enable IPv6-only resolvers to query the DNS for IPv4-only resources by (for example):
 - Letting them query dual-stack forwarders
 - Using some DNS ALG
- Bear in mind
 - Any DNS zone SHOULD be served by at least one IPv4 name server
 - All DNS zones (including 'root', yes, yes!) SHOULD be reachable over IPv4 and IPv6

IPv6DISSemination and Exploitation

DITCHE, Port Elizabeth, Sep. 2005

DNS IPv6-capable software

- BIND (Resolver & Server)
 - http://www.isc.org/products/BIND/
 - BIND 9 (avoid older versions)
- On Unix distributions
 - Resolver Library (+ (adapted) BIND)
- NSD (authoritative server only)
 - http://www.nlnetlabs.nl/nsd/
- Microsoft Windows (Resolver & Server)

•••

DITCHE, Port Elizabeth, Sep. 2005