IPv6 transition – IPv6 deployment

János Mohácsi NIIF/HUNGARNET Central Asia Workshop

Central Asia workshop, Ashgabat

Copy ... Rights

- This slide set is the ownership of the 6D ISS project via its partners
- The Powerpoint version of this materialmay be reused and modified only with written authorization
- Using part of this materialm ust mention 6D TSS courtesy
- PDF files are available from www 6diss org

Contributions

- Main authors
 - János Mohácsi, NIIF/HUNGARNET -Hungary
- Contributors
 - Jérôme Durand, Renater, France
 - Tim Chown, University of Southampton, Great-Brittain

Various Campus transition approaches

- Tunneling ("connecting IPv6 clouds")
 - IPv6 packet is data payload of IPv4 packet/or MPLS frames
- Translation methods ("IPv4<->IPv6 services")
 - Layer 3: Rewriting IP header information (NAT-PT)
 - Layer 4: Rewriting TCP headers
 - Layer 7: Application layer gateways (ALGs)
- Dual Stack
 - Servers/clients speaking both protocols
 - Application/service can select either protocol to use

Tunnelling

- Initially IPv6 in IPv4 or IPv6 in MPLS, (much) later IPv4 in IPv6
- So, IPv6 packets are encapsulated in IPv4 packets/MPLS frame
 - IPv6 packet is payload of IPv4 packet/MPLS frame
- Usually used between edge routers to connect IPv6 'islands'
 - Edge router talks IPv6 to internal systems
 - Encapsulates IPv6 in IPv4/MPLS towards remote tunnel endpoint

Central Asia workshop, Ashgabat

6to4

- In its basic configuration, 6to4 is used to connect two IPv6 islands across an IPv4 network
- Uses special 'trick' for the 2002::/16 IPv6 prefix that is reserved for 6to4 use
 - Next 32 bits of the prefix are the 32 bits of the IPv4 address of the 6to4 router
 - For example, a 6to4 router on 192.0.1.1 would use an IPv6 prefix of 2002:c000:0101::/48 for its site network
- When a 6to4 router sees a packet with destination prefix 2002::/16, it knows to tunnel the packet in IPv4 towards the IPv4 address indicated in the next 32 bits

6to4 basic overview

Central Asia workshop, Ashgabat

6to4 with relay

Central Asia workshop, Ashgabat

ISATAP

- Intra-Site Automatic Tunnel Addressing Protocol (RFC4214)
 - Automatic tunneling
 - Designed for use within a site
 - Used where dual-stack nodes are sparsely deployed in the site (very early deployment phase)
- Host-to-host or host-to-router automatic tunnels
 - Uses a specific EUI-64 host address format
 - Format can be recognised and acted upon by ISATAPaware nodes and routers

ISATAP addresses

The EUI-64 is formed by

- A reserved IANA prefix (00-00-5e)
- A fixed 8-bit hex value (fe)
- The 42-bit IPv4 address of the node
- Toggling the globally unique (u) bit
- For example, 152.66.64.1 would have an EUI-64 host address for IPv6 of:
 - 0200:5efe:9842:4001

ISATAP tunneling

- Relies on the OS supporting ISATAP
- Use one ISATAP router per site, usually advertised under FQDN 'isatap.domain'
 - Virtual IPv6 link over the IPv4 network
 - Know the IPv4 tunnel end-point address from last 32-bits of the IPv6 ISATAP address
 - Get network prefix via ND from router
- Not widely deployed
- Better to deploy proper dual-stack
 - Allows better managed control of deployment

Benefits of dual-stack deployment

- By deploying dual-stack, you can test IPv6-only devices/services without disrupting IPv4 connectivity
- Dual stack IPv6 + IPv4 NAT: legacy IPv4 applications (email, www) can be used next to new IPv6 applications (p2p, home networking, ...)
 - IPv6 offers the next generation of applications

Outline of NRENs/ISP IPv6 deployment

- Obtain IPv6 address space
- Plan the addressing
- Plan the routing
- Test in a small case
- Deploy IPv6 (incrementally dualstack/6PE)
- Enable IPv6 services

Getting IPv6 prefix for LIRs/ISPs

- Global IPv6 RIR rules
 - -http://www.ripe.net/ripe/docs/ipv6.html
 - simple rules for LIRs
 - IPv6 service should be provided
 - detailed plan
 - Usually /32 allocation
- Establishing global rules was not easy.
 - Different structure in different RIR regions: ISP, NIRs/LIRs, LIRs
- What about IX? slightly different rules
 - Infrasstructure addresses
 - Routable /48 address

IPv6 RIPE entries/1

whois -h whois.ripe.net 2001:0738::

ΗU

netname: HU-HUNGARNET-20010717

descr: Hungarnet IPv6 address block

Hungarian Research & Educational Network Budapest, Hungary

country:

mnt-by: RIPE-NCC-HM-MNT ← New mandatory

mnt-lower: NIIF6-MNT ← New mandatory
status: ALLOCATED-BY-RIR ← New

IPv6 RIPE entries/2

- possible values of STATUS field
 - ALLOCATED-BY-RIR Allocated address space by RIR to LIR.
 - ALLOCATED-BY-LIR Allocated address space by LIR to smaller registries/institutions
 - ASSIGNED Assigned to end-users
- RPSLng ready for testing
- Reverse delegation is strongly recommended

Addressing architecture at NIIF/HUNGARNET (case study)

János Mohácsi janos.mohacsi(a)niif.hu

Site addressing

- Each site (including site infrastructure) get /48 but future extensibility to /44:
 - each NIIF managed site the 16 bit SLA is allocated based on the following convention: <SLA> = Address segmentation within the POP
 - Where for <SLA>:
 - Range: 0000 till 00FF: Loopback addresses
 - Range: 0100 till 01FF: Intra-pop point-to-points (if it necessary to number it)
 - Range: 0200 till 02FF: connections to HUNGARNET member of institution
 - Range: 0300 till 03FF: external connectivity (e.g. peering)
 - Range: 0400 till 04FF: POP Local Ethernets

IPv6 loopback addresses

- loopback address will also be used for operational and management actions on the equipment, and for routing protocols like iBGP, which will use these addresses for terminating the peeringsessions.
- Loopback addresses have typically a prefix mask of /128. This will avoid unnecessary unused addresses although address conservation is not really an issue in IPv6.

p2p Link addresses?

Not necessary!

- OSPFv3 is working with link-local
- For IS-IS not necessary working with CLNS
- IGP table can quite small! helps on convergence!
- Customer network is propagated into BGP (even if static routes are used
 - but not with redistribute
 - but network)

Campus deployment plan /1

- Planning
 - IPv6 capability is a requirement
 - IPv6 training

Central Asia workshop, Ashgabat

Campus deployment plan /2

- Obtain global IPv6 address space from your ISP
 - NRENs usually has a /32 prefix from RIPE NCC/RIRs
 - A university will get a /48 prefix from NRENs
- Obtain external connectivity
 - You can do dual-stack connectivity
 - Many universities will use tunnel to to get IPv6 service
 - in this case be sure that nobody can abuse your tunnel use filtering

Campus deployment plan /2

- Internal deployment
 - Determine an IPv6 firewall/security policy
 - Develop an IPv6 address plan for your site
 - Determine address management policy (RA/DHCPv6?)
 - Migrate to dual-stack infrastructure on the wire
 - Network links become IPv6 enabled
 - Enable IPv6 on host systems (Linux, WinXP, ...)
 - Enable IPv6 services and applications
 - Starting with DNS
 - Advertise IPv6 services
 - Enable management and monitoring tools

Most sites will receive /48 assignments:

Network address (48 bits)

16bits

EUI host address (64 bits)

16 bits left for subnetting - what to do with them?

- Sequentially, e.g.
 - 0000
 - 0001
 - FFFF
 - -16 bits = 65535 subnets

Central Asia workshop, Ashgabat

- 2. Following existing IPv4:
 - Subnets or combinations of nets & subnets, or VLANs, etc., e.g.
 - -152.66.**60**.0/24 .003c
 - -152.66.**91**.0/24 .005b

-152.66.**156**.0/24

009c

- Topological/aggregating
- reflecting wiring plants, supernets, large broadcast domains, etc.
 - Main library = 0010/60
 - Floor in library = 001a/64
 - Computing center = 0200/56
 - Student servers = 02c0/64
 - Medical school = c000/52
 - and so on. . .

New Things to Think About

- You can use "all 0s" and "all 1s"! (0000, ffff)
- You're not limited to 254 hosts per subnet!
 - Switch-rich LANs allow for larger broadcast domains (with tiny collision domains), perhaps thousands of hosts/LAN...
- No "secondary subnets" (though >1 address/interface)
- No tiny subnets either (no /30, /31, /32)—plan for what you need for backbone blocks, loopbacks, etc.
- You should use /64 per links!

New Things to Think About

- Every /64 subnet has far more than enough addresses to contain all of the computers on the planet, and with a /48 you have 65536 of those subnets - use this power wisely!
- With so many subnets your IGP may end up carrying thousands of routes consider internal topology and aggregation to avoid future problems.

New Things to Think About

- Renumbering will likely be a fact of life. Although v6 does make it easier, it still isn't pretty...
 - Avoid using numeric addresses at all costs
 - Avoid hard-configured addresses on hosts except for servers (this is very important for DNS servers) – use the feature that you can assign more than one IPv6 address to an interface (IPv6 alias address for servers)
 - Anticipate that changing ISPs will mean renumbering

Interface-ID Selection – some thoughts

- Scanning the search for something to attack
- Use random 64-bit interface-IDs
 - 2001:DB8:BEEF:2::1/64 Common IID
 - 2001:DB8:BEEF:2::9A43:BC5D/64 Random IID
 - 2001:DB8:BEEF:2::A001:1010/64 Semirandom IID
- Operationally can be difficult this type of numbering scheme

Topology Issues

V6 in a production network

Central Asia workshop, Ashgabat

Dual stack

- Obviously the prefered methods
- Requires switching/routing platforms to support hardware based forwarding for IPv4 and IPv6
- IPv6 is transparent on L2 switches except for multicast - MLD snooping
- IPv6 management
 - Telnet/SSH/HTTP/SNMP
- Requires robust control plane for both IPv4 and IPv6
- Requires support for Ipv6 multicast, QoS, infrastructure security, etc...

Layer-2 Campus - one switch

Central Asia workshop, Ashgabat

Layer-2 Campus - one Switch

Central Asia workshop, Ashgabat

Layer-2 Campus - Redundant Switches

Central Asia workshop, Ashgabat

Layer-2 Campus Redundant Switches

Central Asia workshop, Ashgabat

Layer-3 Campus

Central Asia workshop, Ashgabat

Layer-3 Campus

Central Asia workshop, Ashgabat

Edge Router Options

Central Asia workshop, Ashgabat

Routing Protocols

- iBGP and IGP (IS-IS/OSPFv3)
 - IPv6 iBGP sessions in parallel with IPv4
 - You need IPv4 router-id for IPv6 BGP peering
- Static Routing
 - all the obvious scaling problems, but works OK to get started, especially using a trunked v6 VLAN.
- OSPFv3 is might be good
 - It will run in a ships-in-the-night mode relative to OSPFv2 for IPV4 - neither will know about the other.

Implementing default gateway redundancy

- If HSRP, GLBP or VRRP for IPv6 are not available
- NUD can be used for a good HA at the first-hop (today this only applies to the Campus/DC...HSRP is available on routers)

(config-if) #ipv6 nd reachable-time 5000

 Hosts use NUD "reachable time" to cycle to next known default gateway (30 seconds by default)
 Default Gateway: 10.121.10.1

fe80::211:bcff:fec0:d000%4

fe80::211:bcff:fec0:c800%4

Reachable Time : 6s

Base Reachable Time : 5s

Management and monitoring

- Device configuration and monitoring -SNMP
- Statistical monitoring e.g. Cricket/MRTG
- Service monitoring Nagios
- Intrusion detection (IDS)
- Authentication systems

 For example, 802.1x + RADIUS for WLAN
- See more later

How to enable IPv6 services?

- Add v6 testing service for different name first:
 - service.v6.fqdn or service6.fqdn with AAAA
 reverse PTR entry.
 - Test it
- Add v6 service under the same name: – service.fqdn with A +AAAA and two PTR.

How to enable IPv6 services if you don't have IPv6 capable server?

- Use proxy (more exactly reverse-proxy) server
 - Apache2 proxy is a very good one
- Use netcat
 - − Kind of hack ☺

Apache2 reverse proxy

• Configuration is very easy:

ProxyRequests Off
ProxyPass / http://ipv4address
ProxyPassReverse / http://ipv4address
ProxyPreserveHost On

Reverse proxy advantages & disadvantages

Advantage:

- Fast implementation, instantly provide web service over IPv6
- No modifications required in a production web server environment
- Allow for timely upgrading of systems
- Scalable mechanism: a central proxy can support many web sites
- Disadvantage:
 - Significant administrative overhead for large scale deployment
 - May break advanced authentication and access control schemes
 - Breaks statistics: all IPv6 requests seem to be coming from the same address (may be fixed with filtering and concatenation of logs)
 - Not a long term solution overall, native IPv6 support is readily available in related applications and should be preferred whenever possible

DHCP (1)

- IPv6 has stateless address autoconfiguration but DHCPv6 (RFC 3315) is available too
- DHCPv6 can be used both for assigning addresses and providing other information like nameserver, ntpserver etc
- If not using DHCPv6 for addresses, no state is required on server side and only part of the protocol is needed. This is called Stateless DHCPv6 (RFC 3736)
- Some server and client implementations only do Stateless DHCPv6 while others do the full DHCP protocol
- The two main approaches are
 - Stateless address autoconfiguration with stateless DHCPv6 for other information
 - Using DHCPv6 for both addresses and other information to obtain better control of address assignment

DHCP (2)

- One possible problem for DHCP is that DHCPv4 only provides IPv4 information (addresses for servers etc) while DHCPv6 only provides IPv6 information. Should a dual-stack host run both or only one (which one)?
- Several vendors working on DHCP but only a few implementations available at the moment
 - DHCPv6 http://dhcpv6.sourceforge.net/
 - dibbler http://klub.com.pl/dhcpv6/
 - NEC, Lucent etc. are working on their own implementations
 - KAME only stateless
- Cisco routers have a built-in stateless server that provides basic things like nameserver and domain name (also SIP server options in image I checked).
- DHCP can also be used between routers for prefix delegation (RFC 3633). There are several implementations. E.g. Cisco routers can act as both client and server

Remote access via IPv6

- Use native connectivity
 - Rather easy if you are operating dial-in pool or you are an ADSL service provider
- Use 6to4 if you have global IPv4 address
 Good 6to4 relay connectivity is a must
- Use tunnelbroker service rather suboptimal
- Use OpenVPN

Remote Access with IPSEC – or other VPNs

IPv6-in-IPv4 Tunnel Example

IPsec VPN IPv6-in-IPv4 Tunnel

5

Central Asia workshop, Ashgabat

Questions?

mohacsi@niif.hu

Central Asia workshop, Ashgabat