

Study of IPv6 Multicast Deployment in MPLS Networks

Wim Verrydt - Ciprian Popoviciu IPv6 Today – Technology and Deployment Bucharest, August 2, 2006 wverrydt@cisco.com - cpopovic@cisco.com

Introduction

MPLS 6PE (Provider Edge)

Widely deployed architecture for forwarding IPv6 unicast packets across an IPv4 / MPLS enabled core infrastructure

IPv6 Multicast

New types of end-user applications will significantly increase the need for deploying IPv4 and IPv6 multicast solutions

 2 possible architecture options for deploying IPv6 multicast across an existing IPv4 / MPLS core infrastructure

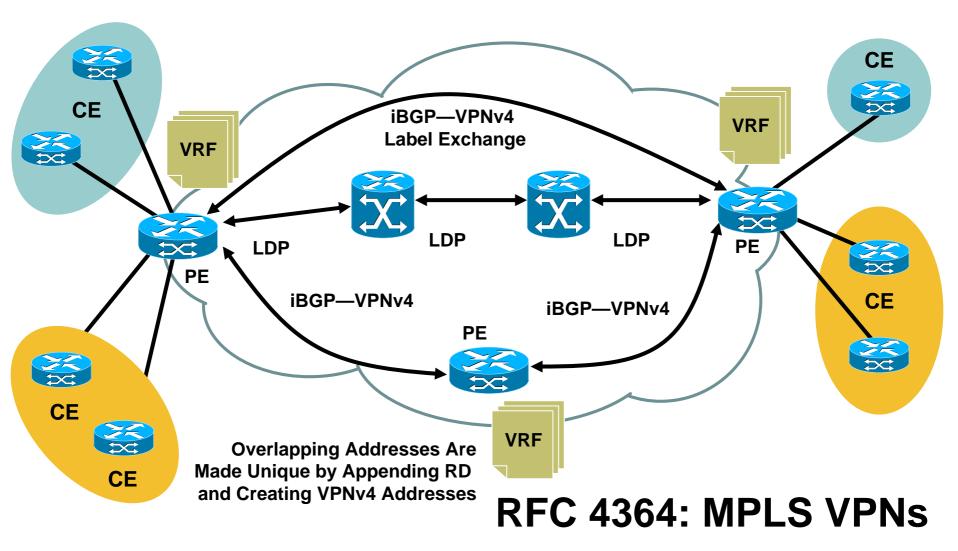
Both rely on MPLS 6PE to transport IPv6 unicast packets

Agenda

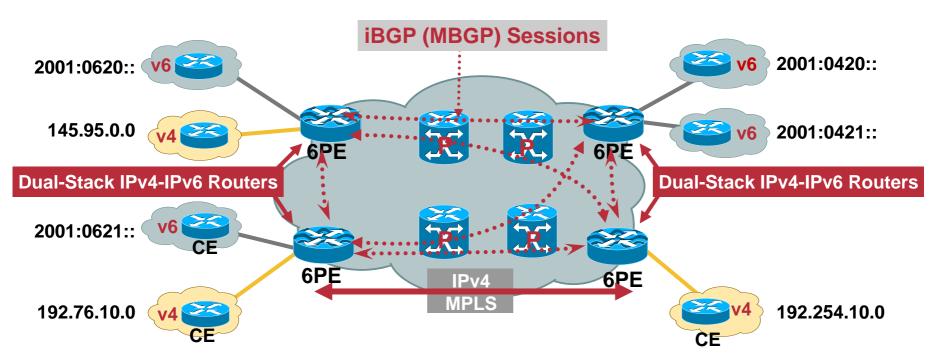
Introduction

MPLS and its applications

MPLS 6PE for IPv6 unicast


IPv6 multicast

2 possible architecture options for deploying IPv6 multicast across an existing IPv4 / MPLS core infrastructure


Solution I – Native IPv6 Multicast Forwarding

- Solution II Layer 2 Encapsulated IPv6 Multicast Forwarding
- Conclusions

Introduction – MPLS and its Applications

Introduction – MPLS 6PE for IPv6 Unicast

- IPv4 / MPLS core infrastructure is IPv6-unaware
- PEs are updated to support dual-stack / 6PE
- IPv6 reachability exchanged among 6PEs via iBGP (MBGP)
- IPv6 packets transported from 6PE to 6PE inside MPLS

Introduction – IPv6 Multicast

Service	IPv4 Multicast	IPv6 Multicast	
Addressing Range	32-bit, Class D	128-bit (112-bit Group)	
Routing	Protocol Independent, All IGPs and MBGP	Protocol Independent, All IGPs and MBGP with IPv6 Multicast SAFI	
Forwarding	PIM-DM, PIM-SM, PIM-SSM, PIM-bidir, PIM- BSR	PIM-SM, PIM-SSM, PIM-bidir, PIM-BSR	
Group Management	IGMPv1, v2, v3	MLDv1, v2	
Domain Control	Boundary, Border	Scope Identifier	
Interdomain Solutions	MSDP across Independent PIM Domains	Single RP within Globally Shared Domains	

Architecture Options

Native IPv6 Multicast Forwarding

IPv6 Multicast packets forwarded natively

Requires core to be IPv6 enabled

IPv6 Unicast forwarding performed though 6PE

No constraints on the location of multicast sources and receivers

• Layer 2 Encapsulated IPv6 Multicast Forwarding

IPv6 Multicast packets L2 MPLS encapsulated and forwarded across an IPv4 / MPLS enabled core

Core remains IPv6 agnostic

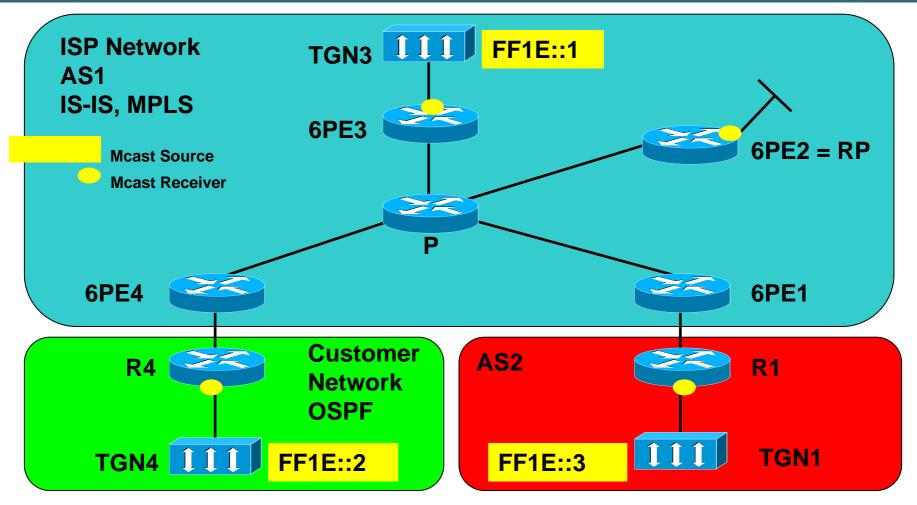
IPv6 Unicast forwarding performed though 6PE

Content distribution application – well-known sources and receivers

Agenda

Introduction

MPLS and its applications


MPLS 6PE for IPv6 unicast

IPv6 multicast

2 possible architecture options for deploying IPv6 multicast across an existing IPv4 / MPLS core infrastructure

- Solution I Native IPv6 Multicast Forwarding
- Solution II Layer 2 Encapsulated IPv6 Multicast Forwarding
- Conclusions

Solution I - Native IPv6 Multicast Forwarding

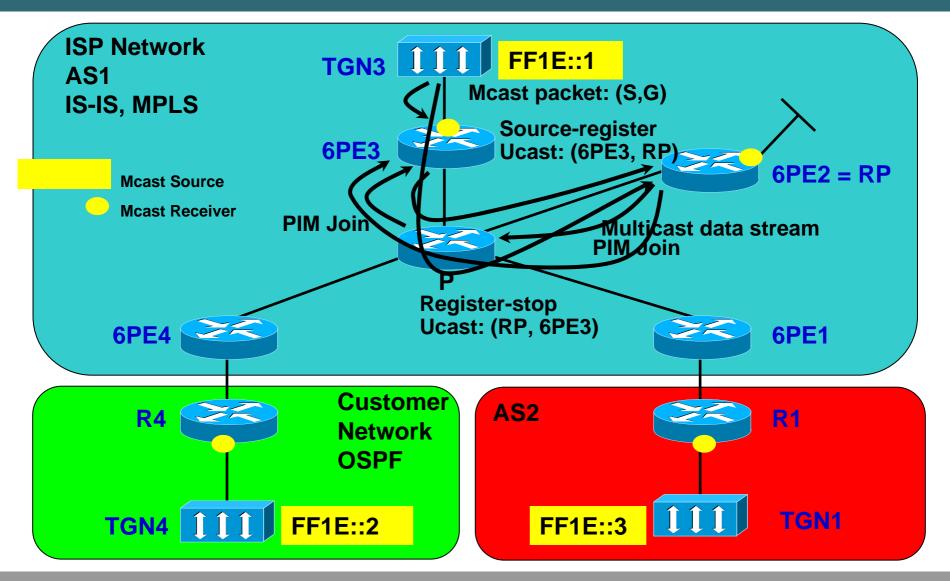
Reference network topology

IPv6 Today - Technology and Deployment

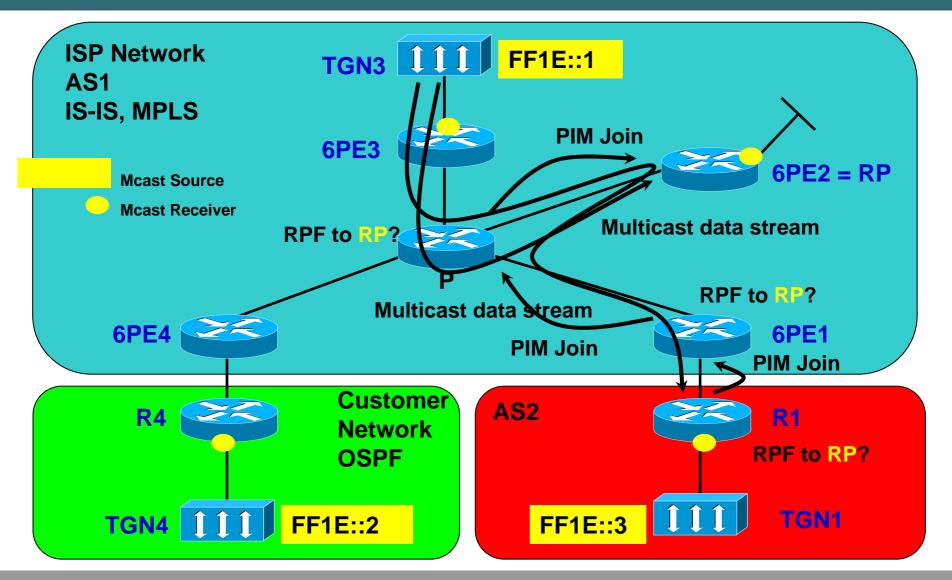
Solution I - Native IPv6 Multicast Forwarding

- IPv6 Multicast packets forwarded natively
- Requires core to be IPv6 enabled
- IPv6 Unicast forwarding performed though 6PE
- No constraints on the location of multicast sources and receivers

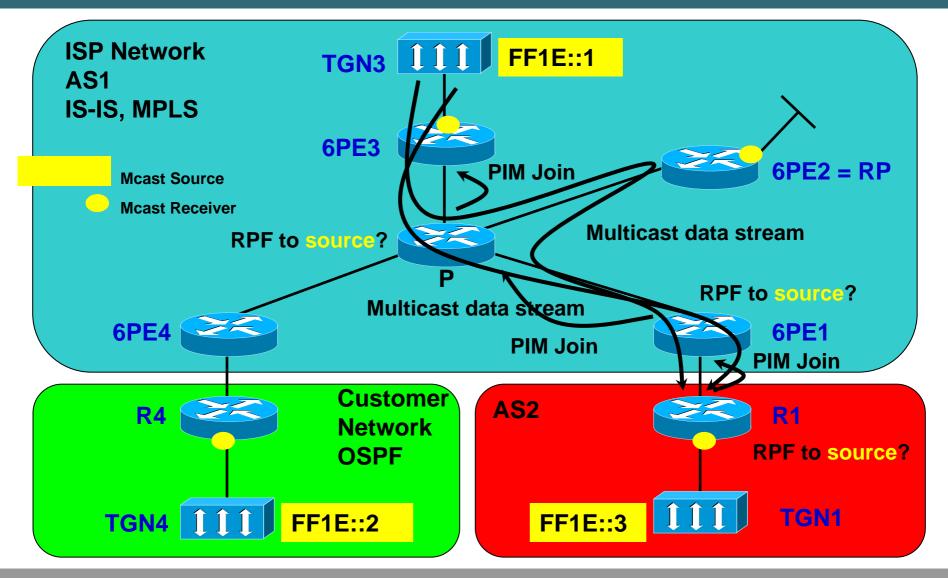
Within ISP backbone, customer network, external AS


• IPv6 multicast control plane operation requires distribution of IPv6 unicast routing in backbone

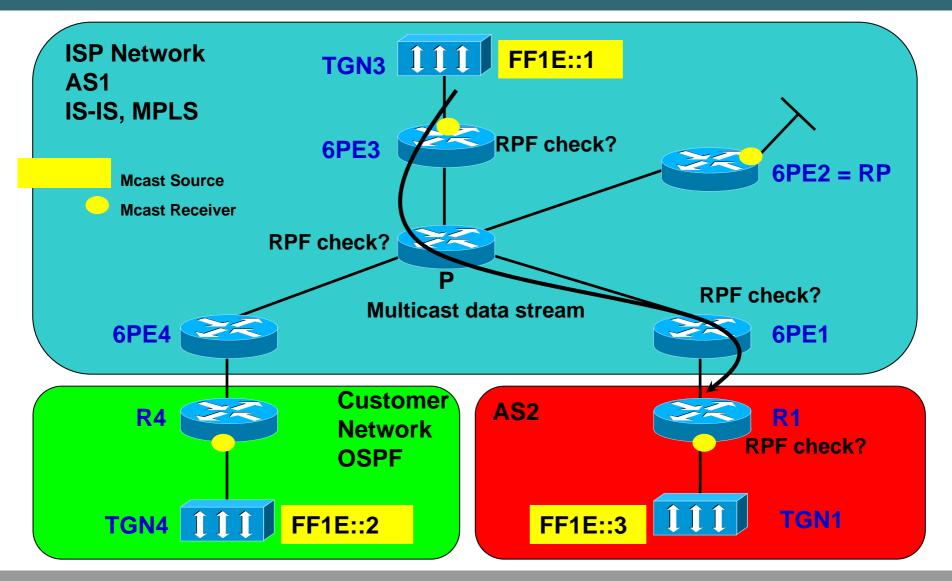
PIM Register, PIM Register-Stop messages


PIM Join / Prune messages

Reverse Path Forwarding (RPF) check


Native IPv6 Multicast Forwarding – Source Registering

Native IPv6 Multicast Forwarding – PIM (*,G) Join / Prune



Native IPv6 Multicast Forwarding – PIM (S,G) Join / Prune

IPv6 Today - Technology and Deployment

Native IPv6 Multicast Forwarding – RPF Check

IPv6 Today - Technology and Deployment

© 2006 Cisco Systems, Inc. All rights reserved.

Native IPv6 Multicast Forwarding – IGP and BGP Routing Design

	IGP		BGP unicast	BGP multicast
			SAFI=1/4	SAFI=2
ISP RP address	PIM Register, PIM J/P, RPF check	X		
External RP address	PIM Register, PIM J/P, RPF check		X Not required on P router	X
ISP first-hop router address	PIM Register-Stop	X		
Customer first-hop router address	PIM Register-Stop		X Not required on P router	
External first-hop router address	PIM Register-Stop		X Not required on P router	
ISP / Customer / External multicast source	PIM J/P, RPF check			X

Native IPv6 Multicast Forwarding – Conclusion

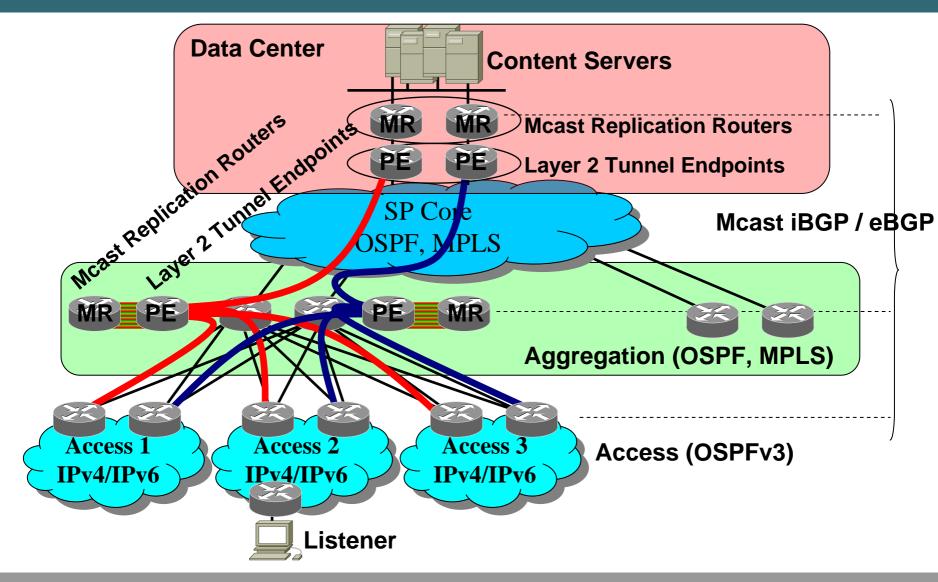
- IPv6 multicast forwarding can be added relatively easy to an existing IPv6 6PE architecture
- Requires core to be IPv6 enabled
- IPv6 IGP only needs to carry a very limited number of prefixes
- Core "P" routers do not require BGP IPv6 unicast (SAFI=1/4). Only BGP IPv6 multicast (SAFI=2) operation is required because PIM Register / Register-Stop messages are MPLS 6PE forwarded
- Capability of infrastructure to perform hardware assisted IPv6 multicast packet forwarding needs to be taken into consideration

Agenda

Introduction

MPLS and its applications

MPLS 6PE for IPv6 unicast


IPv6 multicast

2 possible architecture options for deploying IPv6 multicast across an existing IPv4 / MPLS core infrastructure

Solution I – Native IPv6 Multicast Forwarding

- Solution II Layer 2 Encapsulated IPv6 Multicast Forwarding
- Conclusion

Solution II – Layer 2 Encapsulated IPv6 Multicast Forwarding

Solution II – Layer 2 Encapsulated IPv6 Multicast Forwarding

- IPv6 Multicast packets L2 MPLS encapsulated and forwarded across an IPv4 / MPLS enabled core
- Core remains IPv6 agnostic
- IPv6 Unicast forwarding performed though 6PE
- Content distribution application sources located in SP data centers, receivers located at the access layer

Well-known SPT with root in data center and leafs in access layer. Allows pre-configuration

Multicast routing - PIM-SSM

Receiver management - MLDv2 (setop box) or MLDv1 (*,G) report mapping to predefined sources

Layer 2 Encapsulated IPv6 Multicast Forwarding – Routing Design

- Simple IPv6 multicast forwarding paradigm SPT built with help of several L2 tunnels
- PIM SSM no need for an RP
- Leads to a simplified IPv6 routing design

Dedicated set of IPv6 prefixes identifying sources and tunnel links – used for RPF calculation. Distinct from prefixes used for IPv6 unicast service

IPv6 multicast iBGP / eBGP (SAFI=2) across L2 tunnels – required for PIM J/P and RPF calculation

		Across L2 Tunnels BGP SAFI=2	Access Layer IGP
Multicast source address	PIM J/P, RPF check	X	X

IGP (OSPFv3) in access layer (dual-stack)

Layer 2 Encapsulated IPv6 Multicast Forwarding – Routing Design - Conclusion

- An IPv6 multicast infrastructure can be deployed across an MPLS network in order to support a content distribution service
- Core "P" routers not required to become IPv6 aware
- Well-known sources and receivers allows setup of a L2 tunnel based SPT for IPv6 traffic across the MPLS core
- Only multicast source prefixes require advertisement in BGP IPv6 multicast (SAFI=2) across L2 tunnels and in the local IGP at the access layer

Agenda

Introduction

MPLS and its applications

MPLS 6PE for IPv6 unicast

IPv6 multicast

2 possible architecture options for deploying IPv6 multicast across an existing IPv4 / MPLS core infrastructure

Solution I – Native IPv6 Multicast Forwarding

- Solution II Layer 2 Encapsulated IPv6 Multicast Forwarding
- Conclusion

Overall Conclusion

- Multiple solutions exist to add an IPv6 multicast forwarding capability to an existing, 6PE based, IPv6 unicast service – 2 solutions have been discussed
- Native IPv6 multicast forwarding

MPLS core needs to be IPv6 enabled

Distribution of IPv6 routing information in core is required

Flexible location of sources and receivers

L2 encapsulated IPv6 multicast forwarding

MPLS core remains IPv6 agnostic

Content distribution service with well-known sources and receivers

Requires limited distribution of IPv6 routing information

Q and A

CISCO SYSTEMS