RPSLng

Routing Policy Specification Language - Next Generation

Copy ... Rights

- This slide set is the ownership of the 6DISS project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorization
- Using part of this material must mention 6DISS courtesy
- PDF files are available from <u>www.6diss.org</u>
- Looking for a contact ?
- Mail to : martin.potts@martel-consulting.ch
- Or bernard.tuy@renater.fr

Contributions

- Main authors
 - Carlos Friaças, FCCN, Portugal
 - Miguel Baptista, FCCN, Portugal
- Contributors
 - Paulo Ferreira, FCCN, Portugal
 - Mónica Domingues, FCCN, Portugal
- Special Thanks for RPSLng work
 - João Damas, ISC, Netherlands
 - Gabriella Paolini, 6Net, GARR, Italy
 - Simon Leinen, 6Net, Switch, Switzerland
 - Dimitrios Kalogeras, 6Net, GRNET, Greece

Prerequisites

- You must have followed previously the modules:
 - -010-IPv6 Introduction
 - 020-IPv6 Protocol
 - 030-IPv6 Addressing
 - 100-Routing Protocols

Agenda

- Routing Policy
- RPSL
- RPSLng
- Example
- Conclusion

Routing Policy

- What is routing policy?
 - Public description of the relationship between BGP peers
 - Routing policies enable route classification for importing and exporting routes
 - The goal of routing policies is to control traffic flow

Routing Policy

- Why define a Routing Policy
 - Documentation
 - Recreate your policy in case of loss of hardware/administrators
 - Allows automatic generation of router configurations
 - Provides routing security
 - Troubleshooting

Routing Policy - Example

- Reflects the As' goals
 - Which routes to accept from other AS's
 - How to manipulate the accepted route
 - How to propagate routes through network
 - How to manipulate routes before they leave the AS
 - Which routes to send which routes to send to another AS

Routing Policy

- Each Autonomous System has its own routing policy towards other Networks
- Each policy affects the way the global network behaves
- Which means:
 - It's very useful to know external policies
 - A place to publish them is needed
 - You can automatically configure border routers from that info, if you can rely on the quality of information

RPSL

- RPSL stands for Routing Policy Specification Language
- Replacement for the language known as RIPE-181
- A tool to describe Inter-Domain Policies, it affects:
 - People doing Local Internet Registry work
 - People dealing with border routers, BGP, ...
- It is used for Internet network management.
- It is **NOT** about Internal Routing!

RPSL

- Object oriented language
 - So ... it has classes used to defined the various objects
- Uses RIR database style (whois) objects.
 - Each Object is a list of "attribute-value" pairs displayed in plain text.
 - person, maintainer, role
 - route
 - as-set, route-set
 - ..

Person Object - Example

person: Miguel Baptista address: Example street Lisbon, Portugal phone: +351 123 456 789 e-mail: miguel.bap@example.org nic-hdl: MB10-TEST mnt-by: EXAMPLE-MNT remarks: This object is only an example! changed: carlos.friaças@example.org 20060228 source: TEST

RPSLng is...

RPSL next generation

- Yet another easy thing to have in place
 one more item in the check-list ;)
- Yet another tool to help IPv6 development in an «orderly» fashion;
- Yet another way of showing people IPv6 is not that much complex than IPv4.

RFC4012

- Backward Compatibility
- Changes:
 - New dictionary attribute AFI
 - New predifined dictionary type
 - New protocol dictionary specification
 - New policy attributes
 - New route6 class
 - New attribute in route-set class
 - New attribute in filter-set class
 - New attribute in peering-set class
 - New attribute in inet-rtr class
 - New attribute in rtr-set class

RPSL and RPSLng Some Differences

	IPv4	IPv6
Networks	inetnum	inet6num
Routes	route	route6
Policies (aut-num)	import export	mp-import mp-export

- RIPE/NCC and APNIC already have a RPSLng compliant Whois service.
 Other RIRs will follow.
- LIR admins are rewriting <u>their own</u> routing policies, to include:
 - IPv4 Unicast;
 - IPv4 Multicast;
 - IPv6 Unicast;
 - IPv6 Multicast (very, very few)

Route6

route6: 2001:0760::/32 descr: GARR-IPv6 origin: AS137 mnt-by: GARR-LIR ...

Peering-set

peering-set: prng-ebgp-peers descr: TopneT IPv6 ebgp peers

• • •

mp-peering: AS12533 2001:15A8:A:1:FFFF:FFFF:FFFF:2 at 2001:15A8:A:1:FFFF:FFFF:3

mp-peering: AS5609 3FFE:1001:1:F036::1 at 3FFE:1001:1:F036::2

•••

mp-peering: AS5602 2001:15A8:A:1:FFFF:FFFF:FFF:5 at 2001:15A8:A:1:FFFF:FFFF:FFF:4

mp-peering: AS6939 2001:470:1F01:FFFF::224 at 2001:470:1F01:FFFF::225

Aut-Num aut-num: AS1853 as-name: ACOnet descr: ACOnet Backbone descr: AT remarks: remarks: #upstream: Sprint.net from AS1239 action pref=100; accept ANY import: to AS1239 announce AS-ACONET AND AS-SANET export: afi ipv6.unicast from AS6175 accept ANY mp-import:

mp-export: afi ipv6.unicast to AS6175 announce AS-ACONET-V6

- remarks: #upstream: GEANT.net
- import: from AS20965 action pref=100; accept ANY

export: to AS20965 announce AS-ACONET AND AS-UNREN AND AS-ACOSERV

mp-import: afi ipv6.unicast from AS20965 accept ANY

mp-export: afi ipv6.unicast to AS20965 announce AS-ACONET-V6

....

remarks:

• Inet-rtr

inet-rtr:	BR1.mucl.baycix.net
local-as:	AS12657
ifaddr:	212.72.95.1 masklen 32
interface:	2001:1578:0:FFFF::1 masklen 128
interface:	2001:1578:0:FF::1 masklen 112
peer:	BGP4 212.72.95.3 asno(AS12657)
peer:	BGP4 212.72.72.197 asno(AS29317)
mp-peer:	MPBGP 2001:1578:0:FFFF::2 asno(AS12657)

• Route-set

. . .

route-set: AS29670:RS-IN-BERLIN descr: Individual Network Berlin e.V. org: ORG-INBE1-RIPE mp-members: 192.109.21.0/24 mp-members: 217.197.80.0/20 **mp-members:** 2001:bf0:c000::/35

• Filter-set

filter-set: AS12817:fltr-BOGONS Generic IPv4/IPv6 Prefix & AS filter descr: **mp-filter:** { 10.0.0/8^+, $127.0.0/8^{+}$ 169.254.0.0/16^+. 192.168.0.0/16^+, 0.0.0/0^25-32 } AND { 2001:db8::/32^+, 0000::/8^+, fe00::/9^+. ff00::/8^+, $0::/0^49-128$ AND <[AS64512-AS65534]>

. . .

Example

Example – AS A Policy

AS

aut-num: AS *64600* as-name: AS A descr: This is AS A mp-import: afi ipv4.unicast,ipv6.unicast from AS64700 action pref=106; accept ANY; mp-export: afi ipv4.unicast,ipv6.unicast to AS64700 announce AS-A;

Example – AS **D** Policy

aut-num: AS64900

as-name: AS D

descr: This is AS D

mp-import: afi ipv4.unicast,ipv4.multicast,ipv6.unicast from AS64700 action pref=106; accept ANY;

mp-import: afi ipv6.multicast from AS64800 action pref=110; accept AS-C

mp-export: afi ipv4.unicast,ipv4.multicast,ipv6.unicast to AS64700 announce AS-D;

mp-export: afi ipv6.multicast to AS64800 announce AS-D

Example – AS C Policy

AS

AS64800 aut-num: AS C as-name: AS C, This is AS C descr: import: from AS64700 action pref=106; accept ANY mp-import: afi ipv4.multicast, ipv6.unicast from AS64700 action pref=106; accept ANY; afi ipv6.multicast from AS D action pref=110; accept AS D mp-import: announce AS C to AS64700 export: afi ipv4.multicast, ipv6.unicast to AS64700 announce AS C; mp-export: afi ipv6.multicast to AS64900 announce AS C mp-export:

Example – AS **B** Policy

aut-num:	AS64700
as-name:	AS B AS
descr:	AS B, This is AS B
import:	from AS64800 action pref=106; accept AS-C;
import:	from AS64900 action pref=106; accept AS-D;
import:	from AS64800 action pref=106; accept AS-A;
mp-import:	afi ipv4.multicast,ipv6.unicast from AS64800 action pref=106; accept
AS-C;	
mp-import:	afi ipv4.multicast,ipv6.unicast from AS64900 action pref=106; accept
AS-D;	
mp-import:	afi ipv6.unicast from AS64600 action pref=106; accept AS-A;
export:	to AS64800 announce ANY;
export:	to AS64900 announce ANY;
export:	to AS64600 announce ANY;
mp-export:	afi ipv4.multicast,ipv6.unicast to AS64800 announce ANY;
mp-export:	ati ipv4.multicast,ipv6.unicast to AS64900 announce ANY;
mp-export:	ati ipv6.unicast to AS64600 announce ANY

Conclusions

- RPSL is needed to coordinate global IPv4 routing policies. RPSLng is needed for the same purpose, but over IPv6
- It's rather simple, and someone already dealing with RPSL will easily start to use RPSLng when starting to route IPv6 packets

Extra Slides

RPSLng Tools

- WHOISd
 - Free
 - ftp://ftp.ripe.net/ripe/dbase/software
 - Managed by RIPE
- IRRd
 - Free
 - http://www.irrd.net
 - Managed by MERIT

RPSLng Tools

RIPE's RPSLng Registry

- IPv4 address -> inetnum, route, inet-rtr
- IPv6 address -> inet6num, route6, inet-rtr
- Inverse queries for aut-num -> route + route6
- Production Routing Policies
- IRRToolSet
 - Suite of policy analysis tools
 - Possible usage: Updating BGP routing configurations

Managed by ISC: ftp://ftp.isc.org/isc/IRRToolSet/

