Routing Protocols

Internal and External Routing

IPv6DISSemination and Exploitation

Copy ... Rights

- This slide set is the ownership of the 6DISS project via its partners
- The Powerpoint version of this material may be reused and modified only with written authorization
- Using part of this material must mention 6DISS courtesy
- PDF files are available from <u>www.6diss.org</u>
- Looking for a contact ?
- Mail to : martin.potts@martel-consulting.ch
- Or bernard.tuy@renater.fr

IPv6DISSemination and Exploitation

Contributions

- Main authors
 - Carlos Friaças, FCCN, Portugal
 - Miguel Baptista, FCCN, Portugal
- Contributors
 - Mónica Domingues, FCCN, Portugal
 - Paulo Ferreira, FCCN, Portugal

Prerequisites

- You must have followed previously the modules:
 - -010-IPv6 Introduction
 - 020-IPv6 Protocol
 - 030-IPv6 Addressing

Agenda

- Internal Routing
 - RIPng
 - -IS-IS
 - OSPFv3
- External Routing
 - Multiprotocol BGP

RIPng

- Same as IPv4
 - Based on RIPv2
 - Distance vector, max. 15 hop, split-horizon, ...
- It's an IPv6 only protocol
 - In a dual-stack environment, running RIP, you'll need RIP (IPv4) and RIPng (IPv6)
- IPv6 related functionality
 - Uses IPv6 for transport
 - IPv6 prefix, next-hop IPv6 address
 - For RIP updates, uses multicast address FF02::9

ISISv6

- OSI Protocol
- Based on two levels
 - L2 = Backbone
 - L1 = Stub
 - L2L1= interconnect L2 and L1
- Runs on top of CNLS
 - Each IS device still sends out LSP (Link State Packets)
 - Send information via TLV's (Tag/Length/values)
 - Neighborship process is unchanged
- Major operation remains unchanged

ISISv6 #2

- Updated features:
 - Two new Tag/Length/Values (TLV) for IPv6
 - IPv6 Reachability
 - IPv6 Interface Address
 - New network Layer Identifier
 - IPv6 NLPID

OSPFv3

- OSPFv3 = OSPF for IPv6
- Based on OSPFv2

- Topology of an area is invisible from outside the area
 - LSA flooding is bounded by area
 - SPF calculation is performed separately for each area
- All areas must have a connection to the backbone

OSPFv3

OSPFv3 is an IPv6-only protocol

- In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6)
- There is some work-in-progress about extensible mechanisms to enable OSPFv3 with the support for different address families
- Updated Features
 - Runs directly over IPv6
 - Distributes IPv6 prefixes
 - New LSA types
 - Uses the Multicast address
 - ALLSPFRouters (FF02::5)
 - ALLDRouters (FF02::6)

Multiprocol BGP

- Exterior Gateway Protocol
- Connect separate routing domains that contain independent routing policies (AS)
- Carries sequences of AS numbers indicating path
- Supports the same features and functionality as IPv4 BGP
- Multiple addresses families: IPv4, IPv6, unicast, multicast

Multiprotocol BGP

- BGP4 carries only 3 types of information wich is truly IPv4 specific:
 - NLRI in the UPDATE message contains an IPv4 prefix
 - NEXT_HOP attribute in the UPDATE message contains an IPv4 address
 - BGP ID in AGGREGATOR attribute
- RFC 2858 defines multi-protocols extensions for BGP4
 - this makes BGP4 available for other network layer protocols (IPv6, MPLS...)
 - New BGP4 attributes:
 - MP_REACH_NLRI
 - MP_UNREACH_NLRI
 - Protocol Independent NEXT_HOP attribute
 - Protocol Independent NLRI attribute

Conclusions

- All major routing protocols have stable IPv6 support
- And there isn't major differences with IPv4
- In a dual-stack environment, running OSPF, you'll need OSPFv2 (IPv4) and OSPFv3 (IPv6). It may change in a near future.
- In a dual-stack environment, running RIP, you'll need RIPv1/RIPv2 (IPv4) and RIPng (IPv6)

