

IPv6 Deployment - Security Issues Thinking outside the NAT box

Tony Hain IPv6 Forum Fellow Cisco Systems Technical Leader ahain@cisco.com

CISCO SYSTEMS

Introduction IPv4 lifetime Conflicting views on what security means Environments diversity Layered Access & Scope NAT vs. NAP IPv6 approaches to avoid header manipulation General security issues Similar & Modified Summary

Allocation of IPv4 /8 blocks per month by IANA

Cisco.com

Pool exhaustion

Cisco.com

Full discussion at: www.cisco.com/ipj **The Internet Protocol Journal** Volume 8, Number 3, September 2005

Presentation_ID

Summing it up

Cisco.com

Introduction

Cisco.com

Discussions around IPv6 security have centered on IPsec

Though IPsec is mandatory in IPv6, the same issues with IPsec deployment remain from IPv4:

Configuration complexity & Key management

Many IPv6 stacks do not today support IPsec

Therefore, IPv6 will be deployed largely without cryptographic protections of any kind

• Security in IPv6 is a much broader topic than just IPsec

Even with IPsec, there are many threats which still remain issues in IP networking

 Marketing has done a good job of convincing consumers to deploy NAT to improve the security of their network.

Despite that effort, the technology of address translation and header manipulation does not improve security.

 IPv6 makes some things better, other things worse, and most things are just different, but no more or less secure

Conflicting views on network security

Cisco.com

- Privacy end-to-end eliminates opportunity for a compromised node or shared media segments to be used for man-in-themiddle attacks.
- Traceability is mandatory for both diagnostics and to comply with many laws.

Privacy Extensions limit the exposure to a security threat that targets a host IPv6 address directly. This is great for making an end host harder to identify to an attacker, but it also makes an end host harder to identify to the network administrator

- Securing at IP layer between the endpoints allows transport flows to obtain or share a security association without requiring application awareness or involvement.
- Firewalls expect visibility to ensure only authorized traffic crosses the border.

Privacy based addressing

Cisco.com

 Temporary addresses for IPv6 host client application, eg. Web browser / soft-phone

Inhibit device/user tracking

From RFC 3041: "[mac derived] interface identifier ...facilitates the tracking of individual devices (and thus potentially users)..."

Random 64 bit interface ID, run DAD before using it

Rate of change based on local policy

Reduces attack profile as device stops answering when no longer valid

More general use counters direct attack threats

Administrators may adopt easy to remember addresses (::10, ::20, ::F00D, IPv4 last octet)

IPv6 addresses derived from IEEE Organizational Unit Identifier (OUI) designations, allow scanning focus on popular NIC vendor's ranges

Traceability to the subnet

Cisco.com

- The allocation process implemented by the Registries: IANA allocates from 2001::/16 to registries Each registry gets a /23 prefix from IANA Current policy, Registry allocates a /32 or shorter prefix to an IPv6 ISP Then the ISP allocates a /48 prefix to each customer (or potentially /64) http://www.apnic.net/docs/policy/ipv6-address-policy.html
- All packets tracable to the specific subnet
- Public servers will still be registered in DNS

Internet Environment Diversity

Cisco.com

Presentation_ID

© 2005 Cisco Systems, Inc. All rights reserved.

Environments

Cisco.com

End system & Infrastructure share policy

Presentation_ID © 2005 Cisco Systems, Inc. All rights reserved.

Layered access & scope

Cisco.com

Addresses are assigned to interfaces change from IPv4 model :

Interface 'expected' to have multiple addresses

Valid and Preferred lifetime

Keeping applications restricted within the scope that meets policy reduces the attack profile in the event that other layers of security fail. Since local prefixes will not be routed in the global Internet, remote attackers will not even see or reach the network edge.

Local IPv6 Unicast Addresses – FC00::/7

- Prefix FC00::/7 prefix to identify Local IPv6 unicast addresses.
- One bit to identify local generation vs. reserved
- Global ID 40-bit global identifier used to create a globally unique prefix.
- Subnet ID 16-bit subnet ID is an identifier of a subnet within the site.
- Interface ID 64-bit IID

Communities of Interest

Cisco.com

mIPv6 provides opportunity for function specific addressing

> Manufacturer / service agency appliance monitoring

CISCO SYSTEMS

Introduction Conflicting views on what security means Environments diversity Layered Access & Scope NAT vs. NAP IPv6 approaches to avoid header manipulation General security issues Similar & Modified Summary

Traditional IPv4 Edge Security Design

Cisco.com

- This design can be augmented with IDS, application proxies, and a range of host security controls
- The 3-interface FW design as shown here is in use at thousands of locations worldwide
- Firewall policies are generally permissive outbound and restrictive inbound
- As organizations expand in size the number of "edges" and the ability to clearly identify them becomes more difficult

Presentation_ID

Cisco.com

NAP – A set of IPv6 techniques that may be combined on an IPv6 site to simplify and protect the integrity of its network architecture, without the need for Address Translation

http://www.ietf.org/internet-drafts/draft-ietf-v6ops-nap-01.txt

Market perceived benefits of IPv4 NAT

Cisco.com

Function	IPv4	IPv6
Simple Gateway	DHCP – single address upstream	DHCP-PD – arbitrary length customer prefix upstream
	DHCP – limited number of individual devices downstream	SLAAC via RA downstream
Simple Security	Filtering side effect due to lack of translation state	Explicit Context Based Access Control (Reflexive ACL)
Local usage tracking	NAT state table	Address uniqueness
End system privacy	NAT transforms device ID bits in the address	Temporary use privacy addresses
Topology hiding	NAT transforms subnet bits in the address	Untraceable addresses using IGP host routes /or MIPv6 tunnels for stationary
Addressing Autonomy	RFC 1918	RFC 3177 & ULA
Global Address Pool Conservation	RFC 1918	340,282,366,920,938,463,463,374,607,431,768,211,456 (3.4*10^38) addresses
Renumbering and Multi- homing	Address translation at border	Preferred lifetime per prefix & Multiple addresses per interface

Simple Gateway

Simple Security

Local Usage Tracking

End System Privacy

From: 123.123.123.123

From: 123.123.123.123

om: 123.123.123.123

In some situations they might use a different address for each new connection

they establish.

From: 123.123.123.123

All internal devices appear to be the same from the outside.

NAT

Si

IPv4

Topology Hiding

Addressing Autonomy

Cisco.com

IPv4 IPv6 Private use address space defined as Unique Local Addresses (ULA). Allows each organization to autonomously manage as many /48 prefixes as they need for internal use. (65536 subnets per Internet Local Network Si /48 prefix) 40 bit randomized field minimizes the NAT potential for overlap when interconnecting private local networks. Router announcement simplifies global use prefix overlay for nodes that need to communicate externally. Private address space defined in RFC 1918. Allows for one /8, one /12, Provider changes can be limited to and one /16 to be autonomously DHCP-PD server. managed (some organizations have exceeded these limits). **Overlapping use creates problems** when interconnecting private local Internet Local Network networks. Provider changes are limited to Integrated Firewall / Router public edge device.

Global Address Pool Conservation

Cisco.com

•IPv4 – 32 bits

4,294,967,296 addresses

•IPv6 – 128 bits

340,282,366,920,938,463,463,374,607,431,768,211,456

addresses

Multi-homing & Renumbering

Presentation_ID © 2005 Cisco Systems, Inc. All rights reserved.

CISCO SYSTEMS

Introduction Conflicting views on what security means Environments diversity Layered Access & Scope NAT vs. NAP IPv6 approaches to avoid header manipulation General security issues Similar & Modified Summary

Types of Threats (1/2)

- Cisco.com
- Reconnaissance Provide the adversary with information enabling other attacks
- Unauthorized Access Exploit the open transport policy inherent in the IPv4 protocol
- Header Manipulation and Fragmentation Evade or overwhelm network devices with carefully crafted packets
- Layer 3 Layer 4 Spoofing Modify the IP address and port information to mask the intent or origin of the traffic
- ARP and DHCP Attacks Subvert the host initialization process or a device the host accesses for transit
- Broadcast Amplification Attacks (smurf) Amplify the effect of an ICMP flood by bouncing traffic off of a network which inappropriately processes directed ICMP echo traffic
- Routing Attacks Disrupt or redirect traffic flows in a network

Types of Threats (2/2)

- Cisco.com
- Viruses and Worms Attacks which infect hosts and optionally automate propagation of the malicious payload to other systems
- **Sniffing** Capturing data in transit over a network
- Application Layer Attacks Broad category of attacks executed at Layer 7
- Rogue Devices unauthorized devices connected to a network
- Man-in-the-Middle Attacks Attacks which involve interposing an adversary between two communicating parties
- Flooding Sending bogus traffic to a host or network designed to consume enough resources to delay processing of valid traffic

Attacks fundamentally the same between IPv6 & IPv4

Cisco.com

Sniffing

Without IPsec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4

Application Layer Attacks

Even with IPsec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPsec will do nothing to prevent

Rogue Devices

Rogue devices will be as easy to insert into an IPv6 network as in IPv4

Man-in-the-Middle Attacks (MITM)

Without IPsec, any attacks utilizing MITM will have the same liklihood in IPv6 as in IPv4

Flooding

Flooding attacks are identical between IPv4 and IPv6

At 100M pings / second (40 Gbps fdx), it takes
> 5,800 years to scan the address range for just one subnet.

Worm and virus propagation will fail or will have to find an alternative search path.

So will scanning based network management products...

Presentation_ID

 L3 Spoofing is very common in IPv4, RFC 2827 defines mechanisms to largely eliminate L3 spoofing but this has not seen broad adoption in IPv4 networks.

Note that RFC 2827 stops the spoofing of the network portion of an IP address, not the host portion

- L4 Spoofing can be done in concert with L3 spoofing to attack systems (most commonly running UDP, I.e. SNMP, Syslog, etc.
- Nearly 25% of the current IPv4 space has not been allocated, and around 8% more is reserved for special use (RFC3330) making it fairly easy to block at network ingress through bogon filtering.
- IPv6 deployments should deploy the filtering discussed in RFC 2827 at every point up the aggregation hierarchy.

Translation and Tunneling

Cisco.com

- Tunneling and Address Translation are security issues regardless of protocol
- Tunneling IPv4 over HTTP, ICMP tunneling, etc.

These have been covert channel for hackers for many years.

IPv6 tunnels are only one other avenue of attack and the approaches to deal with it are the same as IPv4 tunnels.

NAT has been a challenge to security as well.

NAT limits the ability to trace an attack to a source machine

IPv4 NAT has been known to break applications and efforts to secure them.

NAT-PT allows IPv4 to interact with IPv6 but has the same issues as IPv4/IPv4 NAT.

CISCO SYSTEMS

Introduction Conflicting views on what security means Environments diversity Layered Access & Scope NAT vs. NAP IPv6 approaches to avoid header manipulation General security issues Similar & Modified Summary

Session Number Presentation_ID

Summary (1/2)

Cisco.com

- 'Security' is a function of perspective. For example, content privacy is a security value to the end user, while content inspection is a security value to the network manager tasked with asset protection.
- In most environments the IP layer is not responsible for security, but stability and uniqueness at the IP layer are relied on by many security functions and mechanisms.
- IPsec is required in all IPv6 implementations; so authenticity and data privacy will be simpler when keys exist, therefore more likely to be used.
- Scanning is a futile effort in IPv6 networks, both for attackers and for network management tools.
- There are native IPv6 alternatives for the perceived beneficial functions of IPv4/NAT that avoid the application failures caused by address translation.

Cisco.com

 IPv6 makes some things better, other things worse, and most things are just different, but no more or less secure:

Better

Automated scanning and worm propagation is harder due to huge subnets

Link-local addressing can limit infrastructure attacks

IPsec will be routinely available for use where keys exist

Worse

Lack of familiarity with IPv6 among operators

Multiple addresses per interface is a different concept

Immaturity of software in the next few years

Improperly deployed transition techniques

Cisco.com

Reference Materials

Cisco.com

 IPv6 IPv4 Threat Comparison and Best Practice Evaluation, Convery and Miller

http://www.cisco.com/security_services/ciag/documents/v6-v4-threats.pdf

- S Deering, R Hinden, "Internet Protocol, Version 6 (IPv6) Specification" (December 1998), RFC 2460 at http://www.ietf.org/rfc/rfc2460.txt
- R Hinden, S Deering, "IP Version 6 Addressing Architecture" (April 2003), RFC 3513 at <u>http://www.ietf.org/rfc/rfc3513.txt</u>
- www.cisco.com/ipv6
- See the best practice whitepaper for more references

- Cisco Self-Study: Implementing Cisco IPv6 Networks (IPV6), Regis Desmeules, CiscoPress
- IPv6 Essentials, Silvia Hagen, O'Reilly
- IETF IPv6 Mailing List for updates on IETF drafts and RFCs

Really there's good comprehensible information here :-)

http://playground.sun.com/pub/ipng/html/instructions.html